Multiparty Karchmer-Wigderson Games and Threshold Circuits

Alexander Kozachinskiy* ${ }^{*}$ and Vladimir Podolskii ${ }^{\dagger 2,3}$
${ }^{1}$ University of Warwick, Coventry, UK
${ }^{2}$ Steklov Mathematical Institute, Russian Academy of Sciences, Moscow, Russia
${ }^{3}$ National Research University Higher School of Economics, Moscow, Russia

Abstract

We suggest a generalization of Karchmer-Wigderson communication games to the multiparty setting. Our generalization turns out to be tightly connected to circuits consisting of threshold gates. This allows us to obtain new explicit constructions of such circuits for several functions. In particular, we provide an explicit (polynomial-time computable) log-depth monotone formula for Majority function, consisting only of 3-bit majority gates and variables. This resolves a conjecture from (Cohen et al.; CRYPTO'13).

Contents

1 Introduction 2
1.1 Applications to circuits 3
1.2 Applications to Multiparty Secure Computations 5
1.3 Multiparty Karchmer-Wigderson games 5
1.4 Connection to threshold gates and the main result 6
1.5 Our techniques: hypotheses games 8
1.6 Organization of the paper 11
2 Preliminaries 12
2.1 Dags and dag-like communication protocols 13

[^0]3 Formal treatment of Q_{k}-hypotheses and R_{k}-hypotheses games 15
4 Results for Majority 18
5 Proof of the Main Theorem 23
5.1 From circuits to protocols 23
5.2 From protocols to circuits 24
6 Effective version 28
7 Derivation of Theorems 1 and 3 33
8 Open problems 35
A Direct proof of Theorem 1 37

1 Introduction

Karchmer and Wigderson established a tight connection between circuit depth and communication complexity [10] (see also [11, Chapter 9]). Namely, they showed that for every Boolean function f one can define a communication game whose communication complexity exactly equals the depth of f in the standard De Morgan basis. This discovery turned out to be very influential in Complexity Theory. A lot of circuit depth lower bounds as well as formula size lower bounds rely on this discovery $[9,12,4,6,3]$. Karchmer-Wigderson games have been used also in adjacent areas like Proof Complexity (see, e.g., [13]).

Karchmer-Wigderson games represent a deep connection of two-party communication protocols with De Morgan circuits. Loosely speaking, one party is responsible for \wedge-gates and the other party is responsible for \vee gates. In this paper, we address the question of what would be a natural generalization of Karchmer-Wigderson games to the multiparty setting. Is it possible to obtain in this way a connection with other types of circuits?

We answer positively to this question: we suggest such a generalization and show its connection to circuits consisting of threshold gates. To motivate our results we first present applications we get from this new connection.

1.1 Applications to circuits

It is well-known that the Majority function ${ }^{1}, \mathrm{MAJ}_{2 n+1}$, can be computed by an $O(\log n)$-depth monotone circuit. This was first proved by Ajtai, Komlós and Szemerédi [1]. More specifically, they constructed a polynomialtime computable $O(\log n)$-depth sorting network, now known as the AKS sorting network. In turn, any sorting network can be easily converted into a monotone circuit of the same depth, computing the Majority function. Namely, we first replace every comparator of the network by a pair of an \wedge gate and an \vee-gate, and then notice that the median output of the network coincides with the Majority function.

The construction of Ajtai, Komlós and Szemerédi is fairly complicated, and has a huge constant before the $\log n$. Valiant [14] gave a much simpler proof of an existence of an $O(\log n)$-depth monotone formula for the Majority function. He used the probabilistic method, so his argument does not give an explicit construction of such a formula.

Several authors (see, e.g., [5, 2]) noticed that Valiant's proof actually gives an $O(\log n)$-depth formula for $\mathrm{MAJ}_{2 n+1}$, consisting only of $\mathrm{MAJ}_{3}{ }^{-}$ gates (and, importantly, with no constants). Once again, this formula is not explicit. On the other hand, the AKS sorting network gives an explicit $O(\log n)$-depth formula for $\mathrm{MAJ}_{2 n+1}$ which consists of \wedge-gates and \vee-gates. There is no obvious way to convert it into a formula which consists of $\mathrm{MAJ}_{3}-$ gates and does not use constants ${ }^{2}$. For brevity, we will call these formulas MAJ_{3}-formulas. So there is a natural question - is it possible to construct an $O(\log n)$-depth MAJ_{3}-formula for $\mathrm{MAJ}_{2 n+1}$, deterministically in polynomial time?

This question was stated as a conjecture by Cohen et al. in [2]. First, they showed that the answer is positive under some cryptographic assumptions. Secondly, they constructed (unconditionally) a polynomial-time computable $O(\log n)$-depth MAJ_{3}-formula which coincides with MAJ_{n} for all inputs in which the fraction of ones is bounded away from $1 / 2$ by $2^{-\Theta(\sqrt{\log n)}}$.

We show that the conjecture of Cohen et al. is true (unconditionally).
Theorem 1. There exists a polynomial-time computable $O(\log n)$-depth MAJ_{3}-formula for $\mathrm{MAJ}_{2 n+1}$.

We use the AKS sorting network in the proof. In fact, one can use any

[^1]polynomial-time computable construction of an $O(\log n)$-depth monotone circuit for $\mathrm{MAJ}_{2 n+1}$. We also obtain the following general result:

Theorem 2. If there is a monotone formula (i.e., a formula consisting of \wedge-gates and \vee-gates of fan-in 2) for $\mathrm{MAJ}_{2 n+1}$ of size s, then there is a MAJ_{3}-formula for $\mathrm{MAJ}_{2 n+1}$ of size $O\left(s \cdot n^{\log _{2}(3)}\right)=O\left(s \cdot n^{1.58 \ldots}\right)$.

The transformation from the last theorem, however, is not efficient. We can make this transformation polynomial-time computable, provided $\log _{2}(3)$ is replaced by $1 /\left(1-\log _{3}(2)\right) \approx 2.71$. In turn, we view Theorem 2 as a potential approach to obtain super-quadratic lower bounds on the monotone formula size for $\mathrm{MAJ}_{2 n+1}$. However, this approach requires better than an $n^{2+\log _{2}(3)}$ lower bound on the formula size of $\mathrm{MAJ}_{2 n+1}$ in the $\left\{\mathrm{MAJ}_{3}\right\}$ basis. Arguably, this basis may be easier to analyze than the standard monotone basis. The best known size upper bounds in the $\{\wedge, \vee\}$ basis and the $\left\{\mathrm{MAJ}_{3}\right\}$ basis are, respectively, $O\left(n^{5.3}\right)$ and $O\left(n^{4.29}\right)$ [7]. Both bounds are due to Valiant's method (see [7] also for the limitations of Valiant's method).

We also study a generalization of the conjecture of Cohen et al. to threshold functions. By THR_{a}^{b} we denote the following Boolean function:

$$
\operatorname{THR}_{a}^{b}:\{0,1\}^{b} \rightarrow\{0,1\}, \quad \operatorname{THR}_{a}^{b}(x)= \begin{cases}1 & x \text { contains at least } a \text { ones, } \\ 0 & \text { otherwise. }\end{cases}
$$

For some reasons (to be discussed below) a natural generalization would be a question of whether $\operatorname{THR}_{n+1}^{k n+1}$ can be computed by an $O(\log n)$-depth formula which does not use constants and consists only of THR_{2}^{k+1}-gates. We will call such formulas Q_{k}-formulas (note that Q_{2}-formulas are MAJ_{3} formulas, because $\mathrm{THR}_{2}^{3}=\mathrm{MAJ}_{3}$). This question was also addressed by Cohen et al. in [2]. First, they observed that there is a construction of depth $O(n)$ (and exponential size). Secondly, they gave an explicit construction of depth $O(\log n)$, which coincides with $\mathrm{THR}_{n+1}^{k n+1}$ for all inputs in which the fraction of ones is bounded away from $1 / k$ by $\Theta(1 / \sqrt{\log n})$.

However, no exact (even non-explicit) construction with sub-linear depth or sub-exponential size was known. In particular, Valiant's probabilistic construction does not work for $k \geq 3$. In this paper, we improve $O(n)$-depth to $O\left(\log ^{2} n\right)$-depth and $\exp (O(n))$-size to $n^{O(1)}$-size for this problem:

Theorem 3. For any constant $k \geq 3$ there exists a polynomial-time computable $O\left(\log ^{2} n\right)$-depth polynomial-size Q_{k}-circuit for $\mathrm{THR}_{n+1}^{k n+1}$ (that is, this circuit does not use constants and consists only of THR_{2}^{k+1}-gates).

1.2 Applications to Multiparty Secure Computations

The conjecture stated in [2] was motivated by applications to Secure Multiparty Computations. The paper [2] establishes an approach to construct efficient multiparty protocols based on protocols for a small number of players. More specifically, in their framework one starts with a protocol for a small number of players and a formula F computing a certain boolean function. Then one combines a protocol for a small number of players with itself recursively, where the recursion mimics the formula F.

It is shown in [2] that from our result it follows that for any n there is an explicit polynomial size protocol for n players secure against a passive adversary that controls any $t<\frac{n}{2}$ players. It is also implicit in [2] that from Theorem 3 for $k=3$ it follows that for any n there is a protocol of size $2^{O\left(\log ^{2} n\right)}$ for n players secure against an active adversary that controls any $t<\frac{n}{3}$ players. An improvement of the depth of the formula in Theorem 3 to $O(\log n)$ would result in a polynomial size protocol [2].

1.3 Multiparty Karchmer-Wigderson games

We now introduce our main conceptual contribution - multiparty KarchmerWigderson games.

Let us start with an example. Consider the ordinary monotone Karchmer-Wigderson game for $\mathrm{MAJ}_{2 n+1}$. In this game, Alice receives a string $x \in \mathrm{MAJ}_{2 n+1}^{-1}(0)$ and Bob receives a string $y \in \mathrm{MAJ}_{2 n+1}^{-1}(1)$. In other words, the number of ones in x is at most n and the number of ones in y is at least $n+1$. The goal of Alice and Bob is to find some coordinate i such that $x_{i}=0$ and $y_{i}=1$. Next, imagine that Bob flips each of his input bits. After that, each party has a vector with at most n ones. Now Alice and Bob have to find a coordinate in which both vectors are 0 .

There is a natural generalization of this problem to the multiparty setting. Namely, assume that there are k parties, and each receives a Boolean vector of length $k n+1$ with at most n ones. Let the goal of parties be to find a coordinate in which all k input vectors are 0 . How many bits of communication are needed for that?

For $k=2$ the answer is $O(\log n)$, because there exists an $O(\log n)$ depth monotone formula for $\mathrm{MAJ}_{2 n+1}$, and hence the monotone KarchmerWigderson game for $\mathrm{MAJ}_{2 n+1}$ can be solved in $O(\log n)$ bits of communication. For $k \geq 3$ we are only aware of a simple $O\left(\log ^{2} n\right)$-bit solution based on the binary search.

Note that in this problem, each party receives a vector on which
$\operatorname{THR}_{n+1}^{k n+1}$ equals 0 . The goal is to find a common zero. We can consider a similar problem for any function f satisfying a so-called Q_{k}-property: any k vectors from $f^{-1}(0)$ have a common zero. In the next definition we define the Q_{k}-property formally and also introduce the related R_{k}-property.

Definition 1. Let Q_{k} be the set of all Boolean functions f satisfying the following property: for all $x^{1}, x^{2}, \ldots, x^{k} \in f^{-1}(0)$ there is a coordinate i such that $x_{i}^{1}=x_{i}^{2}=\ldots=x_{i}^{k}=0$.

Further, let R_{k} be the set of all Boolean functions f satisfying the following property: for all $x^{1}, x^{2}, \ldots, x^{k} \in f^{-1}(0)$ there is a coordinate i such that $x_{i}^{1}=x_{i}^{2}=\ldots=x_{i}^{k}$.

For $f \in Q_{k}$ let the Q_{k}-communication game for f be the following communication problem. There are k parties, the j th party receives a Boolean vector $x^{j} \in f^{-1}(0)$. The goal of parties is to find any coordinate i such that $x_{i}^{1}=x_{i}^{2}=\ldots=x_{i}^{k}=0$.

Similarly, we can define R_{k}-communication games for functions from R_{k}. In the R_{k}-communication games, the objective of parties is slightly different: their goal is to find any coordinate i and a bit b such that $x_{i}^{1}=x_{i}^{2}=\ldots=$ $x_{i}^{k}=b$.

Note that R_{2} contains all self-dual functions - that is, functions that take opposite values in the opposite vertices of a Boolean cube. Similarly, monotone self-dual functions belong to Q_{2}. It is easy to see that R_{2}-communication games are equivalent to Karchmer-Wigderson games for self-dual functions (one party should flip all the input bits). Moreover, Q_{2}-communication games are equivalent to monotone Karchmer-Widgerson games for monotone self-dual functions.

In this paper, we consider R_{k}-communication games as a multiparty generalization of Karchmer-Wigderson games. In turn, Q_{k}-communication games are considered as a generalization of monotone Karchmer-Wigderson games. To justify this choice, one should relate them to some type of circuits.

1.4 Connection to threshold gates and the main result

Every function from Q_{k} can be lower bounded by a Q_{k}-circuit (that is, by a circuit that does not use constants and consists only of THR_{2}^{k+1}-gates). More precisely, let us write $C \leq f$ for a Boolean circuit C and a Boolean function f if for all $x \in f^{-1}(0)$ we have $C(x)=0$. Then the following proposition holds:
Proposition 4 ([2]). The set Q_{k} is equal to the set of all Boolean functions f for which there exists a Q_{k}-circuit $C \leq f$.

There is a similar characterization of the set R_{k} via so-called R_{k}-circuits. These are circuits that does not use constants and consist of THR_{2}^{k+1}-gates and negations that can only be applied to input variables.

Proposition 5. The set R_{k} is equal to the set of all Boolean functions f for which there exists an R_{k}-circuit $C \leq f$.

The proof from [2] of Proposition 4 with obvious modifications also works for Proposition 5.

Given $f \in Q_{k}$, what is the minimal depth of a Q_{k}-circuit $C \leq f$? We show that this quantity is equal (up to a constant factor) to the communication complexity of the Q_{k}-communication game for f.

Theorem 6. Let $k \geq 2$ be any constant. Then for any $f \in Q_{k}$ the following two quantities are equal up to a constant factor:

- the communication complexity of the Q_{k}-communication game for f;
- the minimal d for which there exists a d-depth Q_{k}-circuit $C \leq f$.

Similar result can be obtained for R_{k}-communication games.
Theorem 7. Let $k \geq 2$ be any constant. Then for any $f \in R_{k}$ the following two quantities are equal up to a constant factor:

- the communication complexity of the R_{k}-communication game for f;
- the minimal d for which there exists a d-depth R_{k}-circuit $C \leq f$.

Proofs of both theorems are divided into two parts:
(a) transformation of a d-depth Q_{k}-circuit (resp., R_{k}-circuit) $C \leq f$ into an $O(d)$-bit protocol computing the $Q_{k^{-}}$-communication (resp., $R_{k^{-}}$ communication) game for f;
(b) transformation of a d-bit protocol computing the Q_{k}-communication (resp., R_{k}-communication) game for f into an $O(d)$-depth Q_{k}-circuit (resp., R_{k}-circuit) $C \leq f$.

The first part is simple and the main challenge is the second part. Later in this paper (Section 6) we also formulate refined versions of Theorems 6 and 7. Namely, we refine these theorems in the following two directions. Firstly, we take into account circuit size and for this we consider dag-like communication protocols. Secondly, we show that transformations (a-b) can be done in polynomial time (under some mild assumptions).

We derive our upper bounds on the depth of $\mathrm{MAJ}_{2 n+1}$ and $\mathrm{THR}_{n+1}^{k n+1}$ (Theorems 1 and 3) from Theorem 6. We first solve the corresponding $Q_{k^{-}}$ communication games with small number of bits of communication. Namely, for the case of $\mathrm{MAJ}_{2 n+1}$ we use the AKS sorting network to solve the corresponding Q_{2}-communication game with $O(\log n)$ bits of communication. For the case of $\operatorname{THR}_{n+1}^{k n+1}$ with $k \geq 3$ we solve the corresponding Q_{k}-communication game by a simple binary search protocol with $O\left(\log ^{2} n\right)$ bits of communication. This is where we get depth $O(\log n)$ for Theorem 1 and depth $O\left(\log ^{2} n\right)$ for Theorem 3. Again, some special measures should be taken to make the resulting circuits polynomial-time computable and to control their size ${ }^{3}$.

1.5 Our techniques: hypotheses games

As we already mentioned, the hard part of our main result is to transform a protocol into a circuit.

For this, we develop a new language to describe threshold circuits. Namely, for every f in Q_{k} (resp., in R_{k}) we introduce the corresponding Q_{k}-hypotheses (resp., R_{k}-hypotheses) game for f. We show that strategies in these games are equivalent to Q_{k}-circuits and R_{k}-circuits. It turns out that strategies are more convenient than circuits to simulate protocols, since strategies and protocols operate in the same top-bottom manner.

Once we establish the equivalence of circuits and hypotheses games, it remains for us to transform a communication protocol into a strategy in a hypotheses game. This is an elaborate construction presented in Propositions 18 and 22 .

Here is how we define these games. Fix $f:\{0,1\}^{n} \rightarrow\{0,1\}$. There are two players, Nature and Learner. Before the game starts, Nature privately chooses $z \in f^{-1}(0)$ which then cannot be changed. The goal of Learner is to find some $i \in[n]$ such that $z_{i}=0$. The game proceeds in rounds. At each round, Learner specifies $k+1$ families $\mathcal{H}_{0}, \mathcal{H}_{1}, \ldots, \mathcal{H}_{k} \subseteq f^{-1}(0)$ to Nature. We understand this as if Learner makes the following $k+1$ hypotheses about z :

[^2]\[

$$
\begin{gathered}
" z \in \mathcal{H}_{0} ", \\
" z \in \mathcal{H}_{1} ", \\
\vdots \\
" z \in \mathcal{H}_{k} " .
\end{gathered}
$$
\]

Learner loses immediately if less than k hypotheses are true, i.e., if the number of $j \in\{0,1, \ldots, k\}$ satisfying $z \in \mathcal{H}_{j}$ is less than k. Otherwise, Nature points out to some hypothesis which is true. In other words, Nature specifies to Learner some $j \in\{0,1, \ldots, k\}$ such that $z \in \mathcal{H}_{j}$. The game then proceeds in the same manner for some finite number of rounds. At the end, Learner outputs an integer $i \in[n]$. We say that Learner wins if $z_{i}=0$.

It is not hard to show that Learner has a winning strategy in the $Q_{k^{-}}$ hypotheses game for f if and only if $f \in Q_{k}$. It is instructive to give a proof of the "if" part of this claim: if $f \in Q_{k}$, then Learner has a winning strategy in the Q_{k}-hypotheses game for f. We will denote by \mathcal{Z} the set of all z 's that are compatible with Nature's answers so far. At the beginning, $\mathcal{Z}=f^{-1}(0)$. If $|\mathcal{Z}| \geq k+1$, Learner takes any distinct $z^{1}, z^{2}, \ldots, z^{k+1} \in \mathcal{Z}$ and makes the following hypotheses:

$$
\begin{aligned}
& " z \neq z^{1 "}, \\
& " z \neq z^{2 "}, \\
& \vdots \\
& " z \neq z^{k+1 "} .
\end{aligned}
$$

At least k hypotheses are true, and any Nature's response strictly reduces the size of \mathcal{Z}. When the size of \mathcal{Z} becomes equal to k, Learner is ready to give an answer due to the Q_{k}-property of f.

This strategy requires exponential in n number of rounds. This can be easily improved to $O(n)$ rounds. Indeed, instead of choosing $k+1$ distinct elements of \mathcal{Z} split \mathcal{Z} into $k+1$ disjoint almost equal parts. Then let the i th hypotheses be " z is not in the i th part". Any Nature's response reduces the size of \mathcal{Z} by a constant factor, until the size of \mathcal{Z} is k.

For $f \in Q_{k}$ we can now ask what is the minimal number of rounds in a Learner's winning strategy. The following proposition gives an exact answer:

Proposition 8. For any $f \in Q_{k}$ the following holds. Learner has a d-round winning strategy in the Q_{k}-hypotheses game for f if and only if there exists a d-depth Q_{k}-circuit $C \leq f$.

Proposition 8 is the core result for our applications. For instance, we prove Theorem 1 by giving an explicit $O(\log n)$-round winning strategy of Learner in the Q_{2}-hypotheses game for $\mathrm{MAJ}_{2 n+1}$. Let us now sketch our construction of this strategy argument (a complete proof can be found in Section 4).

Assume that the Nature's input vector is $z \in \operatorname{MAJ}_{2 n+1}^{-1}(0)$. We start by finding two integers $i, j \in[2 n+1]$ such that either $z_{i}=0$ or $z_{j}=0$. This can be achieved in $O(\log n)$ rounds. Namely, we maintain a set $S \subseteq[2 n+1]$ with a property that z equals 0 on some coordinate from S. Initially, $S=[2 n+1]$. Until the size of S is 2 , we split S into 3 almost equal parts S_{1}, S_{2}, S_{3}. We then make the following 3 hypotheses: " z is 0 on some coordinate from $S_{1} \cup S_{2}$ ", " z is 0 on some coordinate from $S_{1} \cup S_{3}$ ", " z is 0 on some coordinate from $S_{2} \cup S_{3}$ ". At least 2 hypotheses are true, and any Nature's response decreases the size of S by a factor of $3 / 2$.

Consider a moment when the size of S became equal to 2 , and assume that $S=\{i, j\}$. Learner knows that either $z_{i}=0$ or $z_{j}=0$. It is not hard, at the cost of one more round, to exclude an option that $z_{i}=z_{j}=0$. So we may assume from now on, that either $z_{i}=0, z_{j}=1$ or $z_{i}=1, z_{j}=0$. At the final stage of our construction, we take any polynomial time computable $O(\log n)$-depth monotone formula F for $\mathrm{MAJ}_{2 n+1}$ (for instance, one that can be obtained from the AKS sorting network). We start to descend from the output gate of F to one of F 's inputs. Throughout this process, we maintain the following invariant: if g is the current gate, then either $g(z)=0 \wedge z_{i}=0$ or $g(\neg z)=1 \wedge z_{j}=0$ (here \neg denotes the bit-wise negation). Now, assume w.l.o.g. that g is an \wedge-gate, and let $g=g_{1} \wedge g_{2}$. Note that among the following 3 statements:

$$
\begin{aligned}
" g_{1}(z) & =0 \wedge z_{i}=0 \wedge z_{j}=1 ", \\
" g_{1}(z) & =1 \wedge g_{2}(z)=0 \wedge z_{i}=0 \wedge z_{j}=1 ", \\
" g_{1}(\neg z) & =g_{2}(\neg z)=1 \wedge z_{i}=1 \wedge z_{j}=0 ",
\end{aligned}
$$

one is true and two are false. We make 3 hypothesis, each calling one of these 3 statements false. Nature responses by indicating a false statement. If it indicates the third statement, then we already know that $z_{i}=0$. Otherwise, we can either descend to g_{1} or to g_{2}. Overall, the last stage of our
construction costs at most $\operatorname{depth}(F)=O(\log n)$ rounds. If we reach an input to F, we output the index of the corresponding variable.

In R_{k}-hypotheses games, Nature and Learner play in the same way except that now Learner's objective is to find some pair $(i, b) \in[n] \times\{0,1\}$ such that $z_{i}=b$. The following analog of Proposition 8 holds:
Proposition 9. For any $f \in R_{k}$ the following holds. Learner has a d-round winning strategy in the R_{k}-hypotheses game for f if and only if there exists a d-depth R_{k}-circuit $C \leq f$.

1.6 Organization of the paper

In Section 2 we give Preliminaries. In Section 3 we define Q_{k}-hypotheses (resp., R_{k}-hypotheses) games formally and show their equivalence to $Q_{k^{-}}$ circuits (resp., R_{k}-circuits). In Section 4 we establish our results for the Majority function - Theorems 1 and 2. Then in Section 5 we obtain Theorems 6 and 7 - that is, we show that Q_{k}-communication (resp., R_{k}-communication) games are equivalent to Q_{k}-circuits and Q_{k}-hypotheses games (resp., $R_{k^{-}}$ circuits and R_{k}-hypotheses games). More detailed references concerning these equivalences can be found on Figure 1.6.

Figure 1: Our equivalence results. An arrow from, say, " Q_{k}-hypotheses games" to " Q_{k}-communications games" references a transformation of strategies in Q_{k}-hypotheses games into protocols for Q_{k}-communication games.

In Section 5 we also establish a weak version of Theorem 3. Namely, we show that there exists an $O\left(\log ^{2} n\right)$-depth Q_{k}-circuit for $\mathrm{THR}_{n+1}^{k n+1}$. Unfortunately, results of Section 5 are not sufficient to make this circuit polynomialtime computable.

To overcome this, in Section 6 we refine Theorems 6 and 7 in order to take into account the circuit size and polynomial-time computability (see

Theorems 24 and 27 below). Then in Section 7 we derive Theorem 3 from results of Section 6. Additionally, in Section 7 we provide another proof for Theorem 1, via results of Section 6. Finally, in Section 8 we formulate some open problems.

In addition, we provide a direct proof of Theorem 1 in Appendix.

2 Preliminaries

Let $[n]$ denote the set $\{1,2, \ldots, n\}$ for $n \in \mathbb{N}$. For a set W we denote the set of all subsets of W by 2^{W}. For two sets A and B by B^{A} we mean the set of all (total) functions from A to B.

We usually use subscripts to denote coordinates of vectors. In turn, we usually use superscripts to numerate vectors.

We use a standard terminology for Boolean functions, formulas and circuits [8]. By MAJ_{n} we denote the majority function on n inputs. By $\operatorname{THR}_{k}^{m}$ we denote the function $\operatorname{THR}_{k}^{m}:\{0,1\}^{m} \rightarrow\{0,1\}^{k}$ which outputs 1 if and only if the number of 1 's in the input is at least k.

We denote the size of a circuit C by $\operatorname{size}(C)$ and the depth by depth (C). By De Morgan formulas/circuits we mean formulas/circuits consisting of \wedge gates and \vee-gates of fan-in 2 and also negations that can only be applied to input variables. By monotone formulas/circuits we mean formulas/circuits consisting of \wedge-gates and \vee-gates of fan-in 2 .

We also consider the following classes of circuits/formulas. By $Q_{k^{-}}$ circuits (resp., Q_{k}-formulas) we mean circuits (resp., formulas) that consist of THR_{2}^{k+1} gates. We also call Q_{2}-circuits and Q_{2}-formulas MAJ_{3}-circuits and MAJ_{3}-formulas. Similarly, by R_{k}-circuits (resp., R_{k}-formulas) we mean circuits (resp., formulas) that consist of THR_{2}^{k+1} gates and also negations that can only be applied to input variables. We stress that it is not allowed to use constants in Q_{k}-circuits and R_{k}-circuits. For all classes of circuits and formulas considered in this paper, we assume that negations do not contribute to the depth.

We use the notion of deterministic communication protocols in the multiparty number-in-hand model. Additionally, to capture the circuit size in our results, we consider not only standard tree-like protocols, but also daglike protocols. This notion was considered by Sokolov in [13]. We use a slightly different variant of this notion. We provide all necessary definitions in the next subsection.

2.1 Dags and dag-like communication protocols

We use the following terminology for directed acyclic graphs (dags). Firstly, we allow more than one directed edge from one node to another. A terminal node of a dag G is a node with no out-going edges. Given a $\operatorname{dag} G$, let

- $V(G)$ denote the set of nodes of G;
- $T(G)$ denote the set of terminal nodes of G.

For $v \in V(G)$ let $O u t_{G}(v)$ be the set of all edges of G that start at v. A dag G is called t-ary if for every non-terminal node v of G we have $\left|O u t_{G}(v)\right|=t$. An ordered t-ary dag is a t-ary dag G equipped with a mapping from the set of edges of G to $\{0,1, \ldots, t-1\}$. This mapping, restricted to $O u t_{G}(v)$, must be injective for every $v \in V(G) \backslash T(G)$. The value of this mapping on an edge e will be called the label of e. In other words, any t edges that start at the same node must have different labels.

By a path in G we mean a sequence of edges $\left\langle e_{1}, e_{2}, \ldots, e_{m}\right\rangle$ such that for every $j \in[m-1]$ edge e_{j} ends in the same node in which e_{j+1} starts. Note that there may be two distinct paths visiting the same nodes in the same order, because we allow parallel edges.

We say that a node w is a descendant of a node v if there is a path from v to w. We call w a successor of v if there is an edge from v to w. A node s is called the starting node if every other node is a descendant of s. Note that any dag has at most one starting node (otherwise there will be a cycle in this dag).

If a dag G has the starting node s, then by the depth of $v \in V(G)$ we mean the maximal length of a path from s to v. The depth of G then is the maximal depth of its nodes.

Assume that $\mathcal{X}_{1}, \mathcal{X}_{2}, \ldots, \mathcal{X}_{k}, \mathcal{Y}$ are some finite sets.
Definition 2. A k-party dag-like communication protocol π with inputs from $\mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \mathcal{X}_{k}$ and with outputs from \mathcal{Y} is a tuple $\left\langle G, P_{1}, P_{2}, \ldots, P_{k}, \phi_{1}, \phi_{2}, \ldots, \phi_{k}, l\right\rangle$, where

- G is an ordered 2-ary dag with the starting node s;
- $P_{1}, P_{2}, \ldots, P_{k}$ is a partition of $V(G) \backslash T(G)$ into k disjoint subsets;
- ϕ_{i} is a function from $P_{i} \times \mathcal{X}_{i}$ to $\{0,1\}$;
- l is a function from $T(G)$ to \mathcal{Y}.

The depth of π (denoted by depth (π)) is the depth of G. The size of π (denoted by $\operatorname{size}(\pi)$) is $|V(G)|$.

The underlying mechanics of the protocol is as follows. Parties descend from s to one of the terminals of G. If the current node v is not a terminal and $v \in P_{i}$, then at v the i th party communicates a bit to all the other parties. Namely, the i th party communicates the bit $b=\phi_{i}(v, x)$, where $x \in \mathcal{X}_{i}$ is the input of the i th party. Among the two edges starting at v, parties take one labeled by b and descend to one of the successors of v along this edge. Finally, when parties reach a terminal t, they output $l(t)$.

We say that $x \in \mathcal{X}_{i}$ is i-compatible with an edge e from v to w if one of the following two condition holds:

- $v \notin P_{i} ;$
- $v \in P_{i}$ and e is labeled by $\phi_{i}(v, x)$.

We say that $x \in \mathcal{X}_{i}$ is i-compatible with a path $p=\left\langle e_{1}, e_{2}, \ldots, e_{m}\right\rangle$ of G if for every $j \in[m]$ it holds that x is i-compatible with e_{j}. Intuitively, this means that the i th party, having input x, communicates along p (from those nodes of p where this party is the one to communicate). Finally, we say that $x \in \mathcal{X}_{i}$ is i-compatible with a node $v \in V(G)$ if there is a path p from s to v such that x is i-compatible with p.

We say that an input $\left(x^{1}, x^{2}, \ldots, x^{k}\right) \in \mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \mathcal{X}_{k}$ visits a node $v \in V(G)$ if there is a path p from s to v such that for every $i \in[k]$ it holds that x^{i} is i-compatible with p. Note that there is a unique $t \in T(G)$ such that $\left(x^{1}, x^{2}, \ldots, x^{k}\right)$ visits t.

To formulate an effective version of Theorem 6 and Theorem 7, we need the following definition.

Definition 3. The light form of a k-party dag-like communication protocol $\pi=\left\langle G, P_{1}, P_{2}, \ldots, P_{k}, \phi_{1}, \phi_{2}, \ldots, \phi_{k}, l\right\rangle$ is a tuple $\left\langle G, P_{1}, P_{2}, \ldots, P_{k}, l\right\rangle$.
I.e., to obtain the light form of π we just forget about $\phi_{1}, \phi_{2}, \ldots, \phi_{k}$. In other words, the light form only contains the underlying ordered dag of π, the partition of non-terminal nodes between parties and the labels of terminals. On the other hand, in the light form there is no information at all how parties communicate at non-terminal nodes.

A protocol π computes a relation $S \subseteq \mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{k} \times \mathcal{Y}$ if the following holds. For every $\left(x^{1}, x^{2}, \ldots, x^{k}\right) \in \mathcal{X}_{1} \times \mathcal{X}_{2} \times \ldots \times \mathcal{X}_{k}$ there exist $y \in \mathcal{Y}$ and $t \in T(G)$ such that $\left(x^{1}, \ldots, x^{k}\right)$ visits $t, l(t)=y$ and $\left(x^{1}, x^{2}, \ldots, x^{k}, y\right) \in S$.

Using the language of relations, we can formally define $Q_{k^{-}}$ communication games and R_{k}-communication games. Namely, given
$f:\{0,1\}^{n} \rightarrow\{0,1\}, f \in Q_{k}$, we define the Q_{k}-communication game for f as the following relation:

$$
\begin{aligned}
& S \subseteq \underbrace{f^{-1}(0) \times \ldots \times f^{-1}(0)}_{k} \times[n], \\
& S=\left\{\left(x^{1}, \ldots, x^{k}, j\right) \mid x_{j}^{1}=\ldots=x_{j}^{k}=0\right\} .
\end{aligned}
$$

Similarly, given $f:\{0,1\}^{n} \rightarrow\{0,1\}, f \in R_{k}$, we define the $R_{k^{-}}$ communication game for f as the following relation:

$$
\begin{aligned}
& S \subseteq \underbrace{f^{-1}(0) \times \ldots \times f^{-1}(0)}_{k} \times([n] \times\{0,1\}), \\
& S=\left\{\left(x^{1}, \ldots, x^{k},(j, b)\right) \mid x_{j}^{1}=\ldots=x_{j}^{k}=b\right\} .
\end{aligned}
$$

It is easy to see that a dag-like protocol for S can be transformed into a tree-like protocol (i.e., into a protocol whose underlying dag is a tree) of the same depth, but this transformation can drastically increase the size.

3 Formal treatment of Q_{k}-hypotheses and $R_{k^{-}}$ hypotheses games

Fix $f \in Q_{k}, f:\{0,1\}^{n} \rightarrow\{0,1\}$. Here we define Learner's strategies in the Q_{k}-hypotheses game for f formally. We consider not only tree-like strategies, but also dag-like. To specify a Learner's strategy S in the Q_{k}-hypotheses game for f, we have to specify:

- An ordered $(k+1)$-ary dag G with the starting node s;
- a subset $\mathcal{H}_{j}(p) \subseteq\{0,1\}^{n}$ for every $j \in\{0,1, \ldots, k\}$ and for every path p in G from s to some node in $V(G) \backslash T(G)$;
- a number $i_{t} \in[n]$ for every terminal t of G.

The underlying mechanics of the game is as follows. Let the Nature's vector be $z \in f^{-1}(0)$. Learner and Nature descend from s to one of the terminals of G. More precisely, a position in the game is determined by a path p, starting at s. If the endpoint of p is not a terminal, Learner specifies sets $\mathcal{H}_{0}(p), \mathcal{H}_{1}(p), \ldots, \mathcal{H}_{k}(p)$ as his hypotheses. If less than k of these sets contain z, Nature wins. Otherwise, Nature specifies some $j \in\{0,1, \ldots, k\}$ such that $z \in \mathcal{H}_{j}(p)$. Among the $k+1$ edges that start at the endpoint of p, the players
take one which is labeled by j. After that, they extend p by this edge. At some point, parties reach a terminal t (i.e., the endpoint of p becomes equal $t)$. Then the game ends and Learner outputs i_{t}.

We stress that Learner's output depends only on t but not on a path to t (unlike Learner's hypotheses). This property will be crucial in establishing a connection between Q_{k}-hypotheses games and Q_{k}-circuits.

We now proceed to a formal definition of what it means that S is winning for Learner.

We say that $z \in f^{-1}(0)$ is compatible with a path $p=\left\langle e_{1}, \ldots, e_{m}\right\rangle$, starting at s, if the following holds. If p is of length 0 , then every $z \in f^{-1}(0)$ is compatible with p. Otherwise, for every $i \in\{1, \ldots, m\}$ it should hold that $z \in \mathcal{H}_{j}\left(\left\langle e_{1}, \ldots, e_{i-1}\right\rangle\right)$, where j is the label of e_{i}. In other words, the label of e_{i} should be a possible Nature's response to Learner's hypotheses in the position $\left\langle e_{1}, \ldots, e_{i-1}\right\rangle$. Informally, this means that Nature, having input z, can reach a position in the game which corresponds to a path p.

We say that a strategy S is winning for Learner in the Q_{k}-hypotheses game for f if for every path p, starting at s, and for every $z \in f^{-1}(0)$, compatible with p, the following holds:

- if the endpoint of p is not a terminal, then the number of $j \in$ $\{0,1, \ldots, k\}$ such that $z \in \mathcal{H}_{j}(p)$ is at least k;
- if the endpoint of p is $t \in T(G)$, then $z_{i_{t}}=0$.

We will formulate a stronger version of Proposition 8. For that we need a notion of the light form of a strategy S. Namely, the light form of S is its ordered dag G equipped with a mapping which to every $t \in T(G)$ assigns i_{t}. In other words, the light form contains a "skeleton" of S and Learner's outputs in terminals (and no information about Learner's hypotheses).

We can identify the light form of any strategy S with a Q_{k}-circuit. Namely, put a THR_{2}^{k+1}-gate to every non-terminal node v of G, and for every $t \in T(G)$ put a variable $x_{i_{t}}$ into t. Set $s-$ the starting node of G - to be the output gate.

Proposition 10. For all Boolean functions $f \in Q_{k}$ the following holds:
(a) if S is a Learner's winning strategy in the Q_{k}-hypotheses game for f, then its light form, considered as a Q_{k}-circuit C, satisfies $C \leq f$.
(b) Assume that $C \leq f$ is a Q_{k}-circuit. Then there exists a Learner's winning strategy S in the Q_{k}-hypotheses game for f such that the light form of S coincides with C.

In fact, in the paper we only use the item (a) of this proposition. But for completeness, we also provide a proof of the item (b).

Proof of the item (a) of Proposition 10. For a node $v \in V(G)$ let f_{v} be the function computed by the circuit C at the gate corresponding to v. We shall prove the following statement. For any path p starting at s and for any z which is compatible with p it holds that $f_{v}(z)=0$, where v is the endpoint of p. To see why this implies $C \leq f$, take any $z \in f^{-1}(0)$ and note that z is compatible with the path which starts and ends at s. The endpoint of this path is s and hence $0=f_{s}(z)=C(z)$.

We will prove the above statement by backward induction on the length of p. The longest path p ends in some $t \in T(G)$. By definition, $f_{t}=x_{i_{t}}$. On the other hand, since S is winning, $z_{i_{t}}=0$ for any z compatible with p. In other words, $f_{t}(z)=0$ for any z compatible with p. The base is proved.

The induction step is the same if p ends in some other terminal. Now assume that p ends in $v \in V(G) \backslash T(G)$. Take any $z \in f^{-1}(0)$ compatible with p. Let p_{j} be the extension of p by the edge which starts at v and is labeled by $j \in\{0,1, \ldots, k\}$. Next, let v_{j} be the endpoint of p_{j} (note that $v_{0}, v_{1}, \ldots, v_{k}$ are successors of v). Since S is winning, the number of $j \in\{0,1, \ldots, k\}$ such that $z \in \mathcal{H}_{j}(p)$ is at least k. Hence the number of $j \in\{0,1, \ldots, k\}$ such that z is compatible with p_{j} is at least k. Finally, by the induction hypothesis this means that the number of $j \in\{0,1, \ldots, k\}$ such that $f_{v_{j}}(z)=0$ is at least k. On the other hand:

$$
f_{v}=\operatorname{THR}_{2}^{k+1}\left(f_{v_{0}}, f_{v_{1}}, \ldots, f_{v_{k}}\right)
$$

Therefore, $f_{v}(z)=0$, as required.
Proof of the item (b) of Proposition 10. The circuit C should be the light form of S. So to define S, it remains to define hypotheses of Learner in S. Consider any non-input gate g of C. Let $g_{0}, \ldots g_{k}$ be gates that are fed to g, that is, $g=\operatorname{THR}_{2}^{k+1}\left(g_{0}, \ldots, g_{k}\right)$. For every path p from the output gate to g we define the following hypotheses:

$$
\mathcal{H}_{0}(p)=g_{0}^{-1}(0), \ldots, \mathcal{H}_{k}(p)=g_{k}^{-1}(0)
$$

Note that $\mathcal{H}_{0}(p), \ldots, \mathcal{H}_{k}(p)$ depend only on the endpoint of p.
We have to show that this strategy of Learner is winning in the $Q_{k^{-}}$ hypotheses game for f. First, let us observe the following: for any path p and for any $z \in f^{-1}(0)$ which is compatible with p it holds that $g(z)=0$, where g is the gate at the endpoint of p. Indeed, if p is of length 0 , then
g is the output gate of C, and hence $g(z)=C(z) \leq f(z)$. Otherwise, note that the game can come to a gate g only if previously Nature indicated that $g(z)=0$.

Now, consider any path p and any $z \in f^{-1}(0)$ which is compatible with p. We have to show two things. First, if p ends in some non-input gate g, then the number of $j \in\{0,1, \ldots, k\}$ such that $z \in \mathcal{H}_{j}(p)$ is at least k. Second, if p ends in an input variable x_{i}, then $z_{i}=0$. The second claim is already established. As for the first claim, note that if z is compatible with p, then, as we have proved, $g(z)=\operatorname{THR}_{2}^{k+1}\left(g_{0}, \ldots, g_{k}\right)(z)=0$. That is, the number of $j \in\{0,1, \ldots, k\}$ such that $g_{j}(z)=0$ is at least k, as required.

Similarly, one can define R_{k}-hypotheses games for functions $f \in R_{k}$. The only difference this time is that the goal of Learner is to find an index $i \in[n]$ and a bit $b \in\{0,1\}$ such that $z_{i}=b$. Correspondingly, leafs of Learner's strategies in R_{k}-hypotheses games will be labeled by pairs from $[n] \times\{0,1\}$. When we turn these strategies into circuits, we turn leafs that are labeled by $(i, 0)$ into x_{i}, and leafs that are labeled by $(i, 1)$ into $\neg x_{i}$.

The same argument as in Proposition 10 establishes the following proposition.

Proposition 11. For all Boolean functions $f \in R_{k}$ the following holds:
(a) if S is a Learner's winning strategy in the R_{k}-hypotheses game for f, then its light form, considered as an R_{k}-circuit C, satisfies $C \leq f$.
(b) Assume that $C \leq f$ is an R_{k}-circuit. Then there exists a Learner's winning strategy S in the R_{k}-hypotheses game for f such that the light form of S coincides with C.

Remark. It might be unclear why we prefer to construct strategies instead of constructing circuits directly, because beside the circuit itself we should also specify Learner's hypotheses. The reason is that strategies can be seen as proofs that the circuit we construct is correct.

4 Results for Majority

Theorem 12 (Restatement of Theorem 1). There exists a polynomial-time computable $O(\log n)$-depth MAJ_{3}-formula for $\mathrm{MAJ}_{2 n+1}$.

Proof. Due to the AKS sorting network [1], there exists an algorithm which in $n^{O(1)}$-time produces a monotone formula F of depth $d=O(\log n)$ which computes $\mathrm{MAJ}_{2 n+1}$. Below we will define a strategy S_{F} in the Q_{2}-hypotheses
game for $\mathrm{MAJ}_{2 n+1}$. Strategy S_{F} will be winning for Learner. Moreover, its depth will be $d+O(\log n)$. In the end of the proof, we will refer to Proposition 10 to show that S_{F} yields an $O(\log n)$-depth polynomial-time computable MAJ_{3}-formula for $\mathrm{MAJ}_{2 n+1}$.

Strategy S_{F} has two phases. The first phase does not use F at all, only the second phase does. The objective of the first phase is to find some distinct $i, j \in[2 n+1]$ such that either $z_{i}=0 \wedge z_{j}=1$ or $z_{i}=1 \wedge z_{j}=0$, where z is the Nature's vector. This can be done as follows.

Lemma 13. One can compute in polynomial time a 3-ary tree T of depth $O(\log n)$ with the set of nodes $v(T)$, and a mapping $w: v(T) \rightarrow 2^{[2 n+1]}$ such that the following holds:

- if r is the root of T, then $w(r)=[2 n+1]$;
- if v is not a leaf of T and v_{1}, v_{2}, v_{3} are 3 children of v, then every element of $w(v)$ is covered at least twice by $w\left(v_{1}\right), w\left(v_{2}\right), w\left(v_{3}\right)$;
- if l is a leaf of T, then $w(r)$ is of size 2 .

Proof. We start with a trivial tree, consisting only of the root, to which we assign $[2 n+1]$. Then at each iteration we do the following. We have a 3 -ary tree in which nodes are assigned to some subsets of $[2 n+1]$. If every leaf is assigned to a set of size 2 , we terminate. Otherwise, we pick any leaf l of the current tree which is assigned to a subset $A \subseteq[2 n+1]$ of size at least 3. We split A into 3 disjoint subsets A_{1}, A_{2}, A_{3} of sizes $\lfloor|A| / 3\rfloor,\lfloor|A| / 3\rfloor$ and $|A|-2\lfloor|A| / 3\rfloor$. We add 3 children to l (which become new leafs) and assign $A_{1} \cup A_{2}, A_{1} \cup A_{3}, A_{2} \cup A_{3}$ to them.

The sizes of $A_{1} \cup A_{2}, A_{1} \cup A_{3}, A_{2} \cup A_{3}$ do not exceed $|A|-\lfloor|A| / 3\rfloor \leq$ $|A|-|A| / 3+2 / 3=2 / 3 \cdot(|A|+1) \leq 2 / 3 \cdot(|A|+|A| / 3)=8 / 9 \cdot|A|$. Hence, the size of the set assigned to a node of depth h is at most $(8 / 9)^{h} \cdot(2 n+1)$. This means that at any moment, the depth of the tree is at $\operatorname{most}^{\log } 9 / 8(2 n+1)=$ $O(\log n)$. Therefore, we terminate in $3^{O(\log n)}=n^{O(1)}$ iterations, because at each iteration we add 3 new nodes. Each iteration takes polynomial time.

We use T to find two $i, j \in[2 n+1]$ such that either $z_{i}=0$ or $z_{j}=0$. Namely, we descend from the root of T to one of its leafs. Learner maintains an invariant that the leftmost 0 -coordinate of z is in $w(v)$, where v is the current node of T. Let v_{1}, v_{2}, v_{3} be 3 children of v. Learner, for every $i \in[3]$, makes a hypothesis that the leftmost 0 -coordinate of z is in $w\left(v_{i}\right)$. Due to the properties of w, at least two hypotheses are true. Nature indicates some
v_{i} for which this is true, and Learner descends to v_{i}. When Learner reaches a leaf, he knows a set of size two containing the leftmost 0-coordinate of z. Let this set be $\{i, j\}$.

Learner knows that either z_{i} or z_{j} is 0 . Thus, $\left(z_{i}, z_{j}\right) \in$ $\{(0,0),(0,1),(1,0)\}$. At the cost of one round we can ask Nature to identify an element of $\{(0,0),(0,1),(1,0)\}$ which differs from $\left(z_{i}, z_{j}\right)$. If the pair $(1,0)$ is identified, then $\left(z_{i}, z_{j}\right) \in\{(0,0),(0,1)\}$, and hence $z_{i}=0$, i.e., we can already output i. In turn, if the pair $(0,1)$ is identified, we can output j. Finally, if the pair $(0,0)$ is identified, then the objective of the first phase is fulfilled and we can proceed to the second phase.

The second phase takes at most d rounds. In this phase Learner produces a sequence $g_{0}, g_{1}, \ldots, g_{d^{\prime}}, d^{\prime} \leq d$ of gates of F with the following properties. First, the depth of g_{i} is i. Second, the last gate $g_{d^{\prime}}$ is an input variable (i.e., a leaf of $F)$. Third, each $g \in\left\{g_{0}, g_{1}, \ldots, g_{d^{\prime}}\right\}$ satisfies:

$$
\begin{equation*}
\left(g(z)=0 \wedge\left(z_{i}, z_{j}\right)=(0,1)\right) \vee\left(g(\neg z)=1 \wedge\left(z_{i}, z_{j}\right)=(1,0)\right) . \tag{1}
\end{equation*}
$$

Here $\neg z$ denotes the bit-wise negation of z.
At the beginning, Learner sets $g_{0}=g_{\text {out }}$ to be the output gate of F. Let us explain why (1) holds for $g_{\text {out }}$. Nature's vector is an element of $\operatorname{MAJ}_{2 n+1}^{-1}(0)$. That is, the number of ones in z is at most n. In turn, in $\neg z$ there are at least $n+1$ ones. Since $g_{\text {out }}$ computes $\mathrm{MAJ}_{2 n+1}$, we have that $g_{\text {out }}(z)=0$ and $g_{\text {out }}(\neg z)=1$. On the other hand, as guarantied after the first phase, we have that $\left(z_{i}, z_{j}\right)=(0,1) \vee\left(z_{i}, z_{j}\right)=(1,0)$.

Assume now that the second phase is finished, that is, Learner has produced some $g_{d^{\prime}}=x_{k}$ satisfying (1). Then by (1) either $g_{d^{\prime}}(z)=z_{k}=0$ or $g_{d^{\prime}}(\neg z)=(\neg z)_{k}=1$. We have $z_{k}=0$ in both cases. Hence, Learner can output k.

It remains to explain how to fulfill the second phase. It is enough to show the following. Assume that Learner knows a non-input gate g_{l} of F of depth l satisfying (1). Then in one round he can either find a gate g_{l+1} of depth $l+1$ satisfying (1) or give a correct answer to the game.

The gate g_{l+1} will be one of the two gates which are fed to g_{l}. Assume first that g_{l} is an \wedge-gate and $g_{l}=u \wedge v$. From (1) we conclude that among the following three statements one is true and two are false:

$$
\begin{align*}
u(z) & =0 \text { and }\left(z_{i}, z_{j}\right)=(0,1), \tag{2}\\
u(z) & =1, v(z)=0 \text { and }\left(z_{i}, z_{j}\right)=(0,1), \tag{3}\\
u(\neg z) & =v(\neg z)=1 \text { and }\left(z_{i}, z_{j}\right)=(1,0) . \tag{4}
\end{align*}
$$

At the cost of one round Learner can ask Nature to indicate one statement which is false for x. If Nature says that (2) is false for z, then (1) holds for $g_{l+1}=v$ (because (1) follows from the disjunction of (3) and (4)). Next, if Nature says that (3) is false for z, then, by the same argument, (1) holds for $g_{l+1}=u$. Finally, if Nature says that (4) is false for z, then we know that $\left(z_{i}, z_{j}\right)=(0,1)$, i.e., Learner can already output i.

One can deal in the same way with the case when g_{l} is an \vee-gate and $g_{l}=u \vee v$. By (1) exactly one of the following three statements is true for z :

$$
\begin{align*}
u(z) & =v(z)=0 \text { and }\left(z_{i}, z_{j}\right)=(0,1), \tag{5}\\
u(\neg z) & =1 \text { and }\left(z_{i}, z_{j}\right)=(1,0), \tag{6}\\
u(\neg z) & =0, v(\neg z)=1 \text { and }\left(z_{i}, z_{j}\right)=(1,0) . \tag{7}
\end{align*}
$$

Similarly, Learner asks Nature to indicate one statement which is false for z. If Nature says that (5) is false for z, then $\left(z_{i}, z_{j}\right)=(1,0)$, i.e., Learner can output j. Next, if Nature says that (6) is false for z, then (1) holds for $g_{l+1}=v$. Finally, if Nature says that (7) is false for z, then (1) holds for $g_{l+1}=u$.

Thus, S_{F} is an $O(\log n)$-depth winning strategy of Learner. Apply Proposition 10 to S_{F}. We get an $O(\log n)$-depth MAJ_{3}-formula $F^{\prime} \leq$ $\mathrm{MAJ}_{2 n+1}$. In fact, F^{\prime} computes $\mathrm{MAJ}_{2 n+1}$. Indeed, $F^{\prime} \leq \mathrm{MAJ}_{2 n+1}$ means that F^{\prime} outputs 0 on every input with at most n ones. On the other hand, F^{\prime} consists of MAJ_{3} gates and hence F^{\prime} computes a self-dual function (that is, it outputs opposite values in opposite vertices of the Boolean cube). Therefore, F^{\prime} outputs 1 on every input with at least $n+1$ ones.

It remains to explain how to compute F^{\prime} in polynomial time. To do so, by Proposition 10 it is sufficient to compute in polynomial time the light form of S_{F}, i.e., the underlying tree of S_{F} and the outputs of Learner in the leafs. It is easy to see that the light form of S_{F} is arranged as follows.

First, compute F and compute T from Lemma 13. For each leaf l of T do the following. Let $w(l)=\{i, j\}$. Add 3 children to l. Two of them will be leafs of S_{F}, labeled by i and j. We then attach a tree of F to the remaining child of l. Then we add to every non-leaf node of F one more child so that now the tree of F is 3 -ary. Each added child is a leaf of S_{F}. If a child was added to an \wedge-gate, then Learner outputs i in this child. In turn, if a child was added to an \vee-gate, then Learner outputs j in it. Finally, there are leafs that were in F initially, each labeled by some input variable. In these nodes, Learner outputs the index of the corresponding input variable.

Theorem 14 (Restatement of Theorem 2). If there is a monotone formula for $\mathrm{MAJ}_{2 n+1}$ of size s, then there is a MAJ_{3}-formula for $\mathrm{MAJ}_{2 n+1}$ of size $O\left(s \cdot n^{\log _{2}(3)}\right)=O\left(s \cdot n^{1.58 \cdots}\right)$.

Proof. Take any monotone formula F for $\mathrm{MAJ}_{2 n+1}$ whose size is s, and consider the corresponding Learner's strategy S_{F} defined in the previous proof. Recall that S_{F} has two phases. The goal of the first phase is to find some $i, j \in[2 n+1]$ such that either $z_{i}=0 \wedge z_{j}=1$ or $z_{i}=1 \wedge z_{j}=0$. To show the theorem, it is sufficient to accomplish the first phase in $\log _{2} n+O(1)$ rounds. Indeed, then the tree of S_{F} is a ternary tree of depth $\log _{2} n+O(1)$ with trees of the same size as formula F attached to leafs. Overall, its size is $O\left(3^{\log _{2}(n)+O(1)} \cdot s\right)=O\left(n^{\log _{2}(3)} \cdot s\right)$.

A difference from the previous proof is that this time we do not care about explicitness. In the explicit construction from the previous proof we fulfil the first phase in $\log _{3 / 2}(n)+O(1)$ rounds (in fact, we only bounded it from above by $\log _{9 / 8}(n)+O(1)$, to avoid technical details). To improve it, we need the following lemma, which will be proved by the probabilistic method.

Lemma 15. There exists a formula D with the following properties:

- formula D is a complete ternary tree of depth $\left\lceil\log _{2}(n)\right\rceil+10$;
- every non-leaf node of D contains a MAJ_{3}-gate and every leaf of D contains a conjunction of 2 variables;
- $D(x)=0$ for every $x \in\{0,1\}^{2 n+1}$ with at most n ones.

Let us at first explain how to use formula D from Lemma 15 to accomplish the first phase in $\log _{2} n+O(1)$ rounds. First, as explained in the previous proof, it is sufficient to find two indices $i, j \in[2 n+1]$ such that either $z_{i}=0$ or $z_{j}=0$. To do so Learner, descends from the output gate of D to some of its leafs. He maintains an invariant that for his current gate g of D it holds that $g(z)=0$. For the output gate, the invariant is true because by Lemma $15 D$ is 0 on all Nature's possible vectors. If we reached a leaf so that g is a conjuction of two variables z_{i} and z_{j}, then the first phase is fulfilled (by the invariant, $z_{i} \wedge z_{j}=0$). Finally, if g is a non-leaf node of D, i.e., a MAJ_{3}-gate, then in one round we can descend to one of the children of g, without violating the invariant. Indeed, since $g(z)=0$, the same is true for at least 2 children of g. For each child g_{i} of g Learner makes a hypothesis that $g_{i}(z)=0$. Any Nature's response allows us to replace g by some g_{i}.

Proof of Lemma 15. Independently for each leaf l of D choose $(i, j) \in[2 n+$ $1]^{2}$ uniformly at random and put the conjuction $z_{i} \wedge z_{j}$ into l. It is enough to demonstrate that for any $x \in\{0,1\}^{2 n+1}$ with at most n ones it holds that $\operatorname{Pr}[D(x)=1]<2^{-2 n-1}$.

To do so, we use a modification of a standard Valiant's argument. For any fixed x with at most n ones, let p be the probability that a leaf l of D equals 1 on x. This probability is the same for all leafs and it does not exceed $1 / 4$. Now, observe that:

$$
\operatorname{Pr}[D(x)=1]=\underbrace{f(f(f(\ldots f}_{\left\lceil\log _{2}(n)\right\rceil+10}(p))) \ldots),
$$

where $f(t)=t^{3}+3 t^{2}(1-t)=3 t^{2}-2 t^{3}$. Since, $3 f(t) \leq(3 t)^{2}$, we have:

$$
3 \operatorname{Pr}[D(x)=1] \leq(3 p)^{2\left[^{\left[\log _{2}(n)\right]+10}\right.} \leq(3 / 4)^{1000 n}<(1 / 2)^{-2 n-1} .
$$

5 Proof of the Main Theorem

Theorem 6 follows from Proposition 16 (Subsection 5.1) and Proposition 18 (Subsection 5.2). In turn, Theorem 7 follows from Proposition 17 (Subsection 5.1) and Proposition 22 (Subsection 5.2).

5.1 From circuits to protocols

Proposition 16. For any constant $k \geq 2$ the following holds. Assume that $f \in Q_{k}$ and $C \leq f$ is a Q_{k}-circuit. Then there is a protocol π, computing the Q_{k}-communication game for f, such that $\operatorname{depth}(\pi)=O(\operatorname{depth}(C))$.

Proof. Let the inputs of parties be $z^{1}, \ldots, z^{k} \in f^{-1}(0)$. Parties descend from the output gate of C to one of the inputs. They maintain an invariant that for the current gate g of C it holds that $g\left(z^{1}\right)=g\left(z^{2}\right)=\ldots=g\left(z^{k}\right)=0$. If g is not yet an input, then $g=\operatorname{THR}_{2}^{k+1}\left(g_{0}, \ldots, g_{k}\right)$ for some gates g_{0}, \ldots, g_{k}. We have for each z^{i} that $g\left(z^{i}\right)=\operatorname{THR}_{2}^{k+1}\left(g_{0}\left(z^{i}\right), \ldots, g_{k}\left(z^{i}\right)\right)=0$. Hence for each z^{i} there is at most one gate out of g_{0}, \ldots, g_{k} satisfying $g_{j}\left(z^{i}\right)=1$. This means that in $O(1)$ bits of communication parties can agree on the index $j \in\{0,1, \ldots, k\}$ satisfying $g_{j}\left(z^{1}\right)=g_{j}\left(z^{2}\right)=\ldots=g_{j}\left(z^{k}\right)=0$.

Thus, in $O(\operatorname{depth}(\pi))$ bits of communication they reach some input of C. If this input contains a variable x_{l}, then by the invariant we have $z_{l}^{1}=$ $z_{l}^{2}=\ldots=z_{l}^{k}=0$, as required.

The same argument can be used to show the following proposition.
Proposition 17. For any constant $k \geq 2$ the following holds. Assume that $f \in R_{k}$ and $C \leq f$ is an R_{k}-circuit. Then there is a protocol π, computing the R_{k}-communication game for f, such that $\operatorname{depth}(\pi)=O(\operatorname{depth}(C))$.

5.2 From protocols to circuits

Proposition 18. For every constant $k \geq 2$ the following holds. Let $f \in Q_{k}$. Assume that π is a communication protocol computing the $Q_{k^{-}}$ communication game for f. Then there is a Q_{k}-circuit $C \leq f$ such that $\operatorname{depth}(C)=O(\operatorname{depth}(\pi))$.

Proof. Set $d=\operatorname{depth}(\pi)$. By Proposition 10, it is enough to give an $O(d)$ round winning strategy of Learner in the Q_{k}-hypotheses game for f.

We will use the following terminology. First, consider any subset $\mathcal{Z} \subseteq$ $f^{-1}(0)$, any set C and any function $g: \mathcal{Z} \rightarrow C$. Then the g-value of a tuple $\left(z^{1}, \ldots, z^{k}\right) \in \mathcal{Z}^{k}$ is a vector $\left(g\left(z^{1}\right), \ldots, g\left(z^{k}\right)\right) \in C^{k}$.

Let V be the set of all nodes of the protocol π and let T be the set of all terminals of the protocol π. Consider any set $U \subseteq V$ and any set $\mathcal{Z} \subseteq f^{-1}(0)$. The following definition is crucial for our argument.

Definition 4. We say that U is complete for \mathcal{Z} if there exist a set C of size k and a function $g: \mathcal{Z} \rightarrow C$ with the following property: for every vector $\bar{c} \in C^{k}$ there exists a node $u \in U$ such that all tuples from \mathcal{Z}^{k} whose g-value is \bar{c} visit u in the protocol π. We also say that such g establishes completeness of U for \mathcal{Z}.

In other words, U is complete for \mathcal{Z} if there is a way of partitioning \mathcal{Z} into at most k parts such that the following holds. Assume that somebody takes a tuple $\left(z^{1}, \ldots, z^{k}\right) \in \mathcal{Z}^{k}$ and for every $i \in[k]$ tells us the part of \mathcal{Z} to which z^{i} belongs. Then we can determine a node $u \in U$ such that the tuple $\left(z^{1}, \ldots, z^{k}\right)$ visits u in the protocol π.

We now describe the Learner's strategy. It proceeds in d iterations, each iteration takes $O(1)$ rounds of the Q_{k}-hypotheses game. Now, we say that a set of nodes $U \subseteq V$ is h-low if all nodes of U that are not terminals are of depth at least h. Learner maintains the following invariant.

Invariant 19. After h iterations, there exists an h-low set of nodes U which is complete for the set \mathcal{Z}_{h} of all $z \in f^{-1}(0)$ that are compatible with Nature's responses after h iterations.

Let us first explain why this invariant holds in the beginning. We need to establish a 0 -low set U which is complete for $f^{-1}(0)$. We can take $U=\{s\}$, where s is the starting node of π. This is because every tuple visits s in the protocol π.

Next, let us explain that if Invariant 19 holds after d iterations, then Learner is able to produce a correct answer to the Q_{k}-hypotheses game for f. Indeed, there exists a d-low set of nodes U which is complete for \mathcal{Z}_{d}. Note that U consists only of terminals. Therefore, it is sufficient to establish the following lemma.

Lemma 20. Assume that $U \subseteq T$ is complete for $\mathcal{Z} \subseteq f^{-1}(0)$. Then there exists $i \in[n]$ such that $z_{i}=0$ for every $z \in \mathcal{Z}$.

Proof. If \mathcal{Z} is empty, then there is nothing to prove. Otherwise, take $g: \mathcal{Z} \rightarrow$ $C,|C|=k$ which establishes completeness of U for \mathcal{Z}. Consider any vector $\bar{c}=\left(c_{1}, \ldots, c_{k}\right) \in C^{k}$ such that $\left\{c_{i} \mid i \in[k]\right\}=g(\mathcal{Z})$. There exists a node $u \in U$ such that any tuple from \mathcal{Z}^{k} whose g-value is \bar{c} visits u. Note that u is a terminal of π. Let $i \in[n]$ be the output of π in u. We show that for any $z \in \mathcal{Z}$ it holds that $z_{i}=0$. Indeed, note that there exists a tuple $\bar{z} \in \mathcal{Z}^{k}$ whose g-value is \bar{c} and which includes z. This tuple visits u. Since π computes the Q_{k}-communication game for f, every element of the tuple \bar{z} should have 0 at the i th coordinate. In particular, this holds for z.

Finally, we describe how to maintain Invariant 19. Assume that it holds after h iterations. Let us show how to perform the next iteration to maintain the invariant. We need a notion of a communication profile for that.

The communication profile of $z \in f^{-1}(0)$ with respect to a set of nodes $U \subseteq V$ is a function $p_{z}: U \rightarrow\{0,1\}$, defined as follows. Take any $v \in U$. If v is a terminal, set $p_{z}(v)=0$. Otherwise, let $i \in[k]$ be the index of the party communicating at v. Set $p_{z}(v)$ to be the bit transmitted by the i th party at v on input z. In the words, the communication profile of z w.r.t. U stores how all the parties communicate at nodes of U on input z.

We also define the communication profile of a tuple $\left(z^{1}, \ldots, z^{k}\right) \in$ $\left(f^{-1}(0)\right)^{k}$ as $\left(p_{z^{1}}, \ldots, p_{z^{k}}\right)$.
Lemma 21. Let $\left(z^{1}, \ldots, z^{k}\right),\left(y^{1}, \ldots, y^{k}\right) \in\left(f^{-1}(0)\right)^{k}$ be two inputs visiting the same node $v \in V \backslash T$. Assume that their communication profiles with respect to $\{v\}$ coincide. Then these two inputs visit the same successor of v.

Proof. Let their common communication profile with respect to $\{v\}$ be $\left(p_{1}, \ldots, p_{k}\right)$. Next, assume that i is the index of the party communicating at v. Then where these inputs descend from v is determined by p_{i}.

Here is what Learner does during the $(h+1)$ st iteration. He takes any h-low U which is complete for \mathcal{Z}_{h}. Then he takes any $g: \mathcal{Z}_{h} \rightarrow C,|C|=k$ which establishes completeness of U for \mathcal{Z}_{h}. Note that w.l.o.g. U is of size at most k^{k}. This is because for any vector $\bar{c} \in C^{k}$ we need exactly one node in U for \bar{c} to establish completeness.

Learner now devises a new function g^{\prime} whose domain is the set \mathcal{Z}_{h}. The value of $g^{\prime}(z)$ is a pair $\left(p_{z}, g(z)\right)$, where p_{z} is a communication profile of z with respect to U. There are at most $2^{|U|} \leq 2^{k^{k}}$ different communication profiles with respect to U. Hence, the image of g^{\prime} is of size at most $2^{k^{k}} \cdot k=$ $O(1)$.

The goal of the $(h+1)$ st iteration is to narrow down the image of g^{\prime} to a set of size k. Learner does this as follows. While there exist $k+1$ different possible values of g^{\prime}, Learner asks Nature to reject one of them. More specifically, for each of these $k+1$ values, Learner make a hypothesis that $g^{\prime}(z)$ differs from this value. As the size of the image of g^{\prime} in the beginning is $O(1)$, this process takes $O(1)$ rounds of the Q_{k}-hypotheses game. In the end of the $(h+1)$ st iteration, we are left with k possible values of g^{\prime}. Denote them by $\left(p_{1}, c_{1}\right), \ldots\left(p_{k}, c_{k}\right)$. In other words, we know that $g^{\prime}\left(Z_{h+1}\right) \subseteq\left\{\left(p_{1}, c_{1}\right), \ldots,\left(p_{k}, c_{k}\right)\right\}$ (recall that Z_{h+1} is the set of $z \in f^{-1}(0)$ that are compatible with the Nature's responses after $h+1$ iterations). We show that $g^{\prime}: \mathcal{Z}_{h+1} \rightarrow\left\{\left(p_{1}, c_{1}\right), \ldots,\left(p_{k}, c_{k}\right)\right\}=C^{\prime}$ establishes completeness of some $(h+1)$-low set of nodes U^{\prime} for \mathcal{Z}_{h+1}. This will establish Invariant 19 after the $(h+1)$ st iteration.

Take any vector $\bar{c} \in\left(C^{\prime}\right)^{k}$. It is enough to show that all the inputs from $\left(\mathcal{Z}_{h+1}\right)^{k}$ whose g^{\prime}-value is \bar{c} visit the same node v^{\prime} which is either a terminal or of depth at least $h+1$. Then we just set U^{\prime} to be the union of all such v^{\prime} over all $\bar{c} \in\left(C^{\prime}\right)^{k}$.

All tuples from $\left(\mathcal{Z}_{h+1}\right)^{k}$ with the same g^{\prime}-value visit the same node $v \in U$. This is because g^{\prime}-value of a tuple determines its g-value, and hence we can use Invariant 19 for \mathcal{Z}_{h} here. If v is a terminal, there is nothing left to prove. Otherwise, note that g^{\prime}-value of a tuple also determines its communication profile with respect to U, and hence with respect to $\{v\} \subseteq U$. Therefore, by Lemma 21, all tuples with this g^{\prime}-value visit the same successor of v.

With straightforward modifications, one can obtain a proof of the following:

Proposition 22. For every constant $k \geq 2$ the following holds. Let $f \in R_{k}$. Assume that π is a communication protocol computing the R_{k} communication game for f. Then there is an R_{k}-circuit $C \leq f$ such that $\operatorname{depth}(C)=O(\operatorname{depth}(\pi))$.
Corollary 23 (Weak version of Theorem 3). For any constant $k \geq 2$ there exists an $O\left(\log ^{2} n\right)$-depth Q_{k}-formula for $\mathrm{THR}_{n+1}^{k n+1}$.
Proof. We will show that there exists an $O\left(\log ^{2} n\right)$-depth protocol π computing the Q_{k}-communication game for $\mathrm{THR}_{n+1}^{k n+1}$. By Proposition 18 this means that there is an $O\left(\log ^{2} n\right)$-depth Q_{k}-formula $F \leq \operatorname{THR}_{n+1}^{k n+1}$. It is easy to see that F actually coincides with $\operatorname{THR}_{n+1}^{k n+1}$. Indeed, assume for contradiction that $F(x)=0$ for some x with at least $n+1$ ones. Then it is easy to construct x^{2}, \ldots, x^{k}, each with n ones, such that x, x^{2}, \ldots, x^{k} have no common 0-coordinate. Since $F(x)=F\left(x^{2}\right)=\ldots=F\left(x^{k}\right)=0$, we conclude that F does not have the Q_{k}-property. But F is a Q_{k}-formula, so it gives a contradiction with Proposition 4.

Let π be the following protocol. Assume that the inputs to parties are $x^{1}, x^{2}, \ldots, x^{k} \in\{0,1\}^{k n+1}$. Without loss of generality, we may assume that each x^{r} has exactly n ones. For $x \in\{0,1\}^{k n+1}$ define $\operatorname{supp}(x)=\{i \in$ $\left.[k n+1] \mid x_{i}=1\right\}$. Let T be a binary rooted tree of depth $d=\log _{2}(n)+O(1)$ with $k n+1$ leafs. Identify leafs of T with elements of $[k n+1]$. For a node v of T, let T_{v} be the set of all leafs of T that are descendants of v. Once again, we view T_{v} as a subset of $[k n+1]$.

The protocol proceeds in at most d iterations. After i iterations, for $i=0, \ldots d$, parties agree on a node v of T of depth i, satisfying the following invariant:

$$
\begin{equation*}
\sum_{r=1}^{k}\left|\operatorname{supp}\left(x^{r}\right) \cap T_{v}\right|<\left|T_{v}\right| . \tag{8}
\end{equation*}
$$

At the beginning, Invariant (8) holds just because v is the root, $T_{v}=[k n+1]$ and each $\operatorname{supp}\left(x^{r}\right)$ is of size n.

After d iterations, $v=l$ is a leaf of T. Parties output l. This is correct because by (8) we have $\left|T_{l}\right|=1 \Longrightarrow\left|\operatorname{supp}\left(x^{r}\right) \cap T_{l}\right|=0 \Longrightarrow x_{l}^{r}=0$ for every $r \in[k]$.

Let us now explain what parties do at each iteration. If the current v is not a leaf, let v_{0}, v_{1} be two children of v. Each party sends $\left|\operatorname{supp}\left(x^{r}\right) \cap T_{v_{0}}\right|$ and $\left|\operatorname{supp}\left(x^{r}\right) \cap T_{v_{1}}\right|$, using $O(\log n)$ bits. Since $T_{v_{0}}$ and $T_{v_{1}}$ is a partition of T_{v}, we have:

$$
\sum_{b=0}^{1} \sum_{r=1}^{k}\left|\operatorname{supp}\left(x^{r}\right) \cap T_{v_{b}}\right|=\sum_{r=1}^{k}\left|\operatorname{supp}\left(x^{r}\right) \cap T_{v}\right|<\left|T_{v}\right|=\sum_{b=0}^{1}\left|T_{v_{b}}\right| .
$$

Thus the inequality:

$$
\begin{equation*}
\sum_{r=1}^{k}\left|\operatorname{supp}\left(x^{r}\right) \cap T_{v_{b}}\right|<\left|T_{v_{b}}\right| \tag{9}
\end{equation*}
$$

is true either for $b=0$ or for $b=1$. Let b^{*} be the smallest $b \in\{0,1\}$ for which (9) is true. Parties replace v by $v_{b^{*}}$ and proceed to the next iteration.

There are $d=O(\log n)$ iterations, each takes $O(\log n)$ bits of communication. Hence π is $O\left(\log ^{2} n\right)$-depth, as required.

Remark. The strategy from the proof of Proposition 18 is efficient only in terms of the number of rounds. In the next section, we present another version of this strategy. It will give us not only low-depth, but also explicit polynomial-size circuits. For that, however, we require a bit more from protocols for the Q_{k}-communication games.

6 Effective version

Fix $f \in Q_{k}$. We say that a dag-like communication protocol π strongly computes the Q_{k}-communication game for f if for every terminal t of π and for every $x \in f^{-1}(0)$ the following holds. If x is i-compatible with t for some $i \in[k]$, then $x_{j}=0$, where $j=l(t)$ is the label of the terminal t in the protocol π. In other words, there should be a path p to t such that, first, $x_{l(t)}=0$, and second, one of the parties is compatible with this path on input x. That is, for every node of p from where this party is the one to communicate, it communicates along p on x. We stress that there might be no tuple from $\left(f^{-1}(0)\right)^{k}$ which includes x and visits t. Hence, a protocol which computes the Q_{k}-hypotheses game for f might not compute it in the strong sense.

Similarly, fix $f \in R_{k}$. We say that a dag-like communication protocol π strongly computes the R_{k}-communication game for f if for every terminal t of π and for every $x \in f^{-1}(0)$ the following holds. If x is i-compatible with t for some $i \in[k]$, then $x_{j}=b$, where $(j, b)=l(t)$ is the label of the terminal t in the protocol π.

Next, we prove an effective version of Proposition 18.
Theorem 24. For every constant $k \geq 2$ there exists a polynomial-time algorithm A such that the following holds. Assume that $f \in Q_{k}$ and π is a dag-like protocol which strongly computes the Q_{k}-communication game for f. Then, given the light form of π, the algorithm A outputs a Q_{k}-circuit
$C \leq f$ such that depth (C) is linear in $\operatorname{depth}(\pi)$ and $\operatorname{size}(C)$ is polynomial in $\operatorname{size}(\pi)$.

Proof. Let $d=\operatorname{depth}(\pi)$. We will again give an $O(d)$-round winning strategy of Learner in the Q_{k}-hypotheses game for f. This time, however, we will ensure that, given the light form of π, the light form of our strategy can be computed in polynomial time (in particular, its size will be polynomial in size (π)). By Proposition 10, this will give us an $O(d)$-depth Q_{k}-circuit $C \leq f$ whose size is polynomial in $\operatorname{size}(\pi)$ and which is polynomial-time computable from the light form of π.

Instead of specifying the light form of our strategy directly, we will use the following trick. Assume that Learner has a working tape consisting of $O(\log \operatorname{size}(\pi))$ cells, where each cell can store one bit. Learner memorizes all the Nature's responses so that he always knows the current position of the game. But he does not store the sequence of Nature's responses on the working tape (there might be no space for it). Instead, he first makes his hypotheses which depend on the current position. Then he receives a Nature's response $r \in\{0,1, \ldots, k\}$. And then he modifies the working tape, but the result must depend only on the current content of the working tape and on r (and not on the current position in a game). Moreover, we will ensure that modifying the working tape takes polynomial time given the light form of π.

The main purpose of the working tape manifests itself in the end. Namely, at some point, Learner decides to stop making hypotheses. This should be indicated on the working tape. More importantly, Learner's output must depend only on the content of the working tape in the end (and not on the whole sequence of Nature's responses). Moreover, this should take polynomial time to compute that output, given the light form of π.

If a strategy satisfies these restrictions, then its light form is polynomialtime computable from the light form of π. Indeed, the underlying dag will consist of all possible configurations of the working tape. Their number is polynomial in $\operatorname{size}(\pi)$, because there are $O(\log \operatorname{size}(\pi))$ bits on the working tape. For all non-terminal configurations c we go through all $r \in\{0,1, \ldots, k\}$. We compute what would be a configuration c_{r} of the working tape if the current configuration is c and Nature's response is r. After that we connect c to $c_{0}, c_{1}, \ldots, c_{k}$. Finally, we compute the outputs of Learner in all terminal configurations. This gives the light form of our strategy in time polynomial in $\operatorname{size}(\pi)$.

Let V be the set of nodes of π and T be the set of terminals of π. We will work with multidimensional arrays of nodes. Namely, we will consider
k-dimensional arrays in which every dimension is indexed by integers from $[k]$. Formally, such arrays are functions of the form $M:[k]^{k} \rightarrow V$. We will use the notation $M\left[c_{1}, \ldots, c_{k}\right]$ for the value of M on $\left(c_{1}, \ldots, c_{k}\right) \in[k]^{k}$.

We will use a slightly stronger notion of completeness than in the proof of Proposition 18.
Definition 5. We say that a multidimensional array $M:[k]^{k} \rightarrow V$ is complete for a set $\mathcal{Z} \subseteq f^{-1}(0)$ if there exists a function $g: \mathcal{Z} \rightarrow[k]$ such that the following holds. For every $z \in \mathcal{Z}$, for every $i \in[k]$ and for every $\left(c_{1}, \ldots, c_{k}\right) \in[k]^{k}$ such that $c_{i}=g(z)$ it holds that the node $M\left[c_{1}, \ldots, c_{k}\right]$ is i-compatible with z in the protocol π. We also say that such g establishes completeness of M for \mathcal{Z}.

We stress that in this definition $M\left[c_{1}, \ldots, c_{k}\right]$ should be i-compatible with z even if there is no tuple $\left(z_{1}, \ldots, z_{k}\right)$ with $\left(g\left(z_{1}\right), \ldots, g\left(z_{k}\right)\right)=\left(c_{1}, \ldots, c_{k}\right)$. Intuitively, we can afford such a strong notion of completeness (compared to the proof of Proposition 18) because this time π computes the $Q_{k^{-}}$ communication game for f in the strong sense.

We now describe the Learner's strategy. It proceeds in d iterations, each iteration takes $O(1)$ rounds of the Q_{k}-hypotheses game. The working tape of Learner consists of:

- an integer iter;
- a multidimensional array $M:[k]^{k} \rightarrow V$;
- $O(1)$ additional bits of memory.

The integer iter will never exceed $d \leq \operatorname{size}(\pi)$, so to store all this information we will need $O(\log (\operatorname{size}(\pi)))$ bits, as required. At each moment, iter equals the number of iterations performed so far (at the beginning, iter $=0$). Learner updates M only at moments when iter is incremented by 1 . So let M_{h} denote the content of the array M when iter $=h$ (that is, after h iterations). Learner stops making hypotheses when iter $=d$ (that is, after d iterations).

We call an array of nodes h-low if every node in it is either a terminal or of depth at least h. Learner maintains the following invariant.

Invariant 25. M_{h} is h-low and M_{h} is complete for the set \mathcal{Z}_{h} of all $z \in$ $f^{-1}(0)$ that are compatible with Nature's responses after h iterations.

At the beginning, Learner sets every element of M_{0} to be the starting node of π so that Invariant 25 trivially holds.

Now, let us show that when iter $=d$, Learner is able to output a correct answer to the Q_{k}-hypotheses game in polynomial time, knowing only the current content of the working tape and the light form of π. Indeed, observe that M_{d} consists only of terminals. Hence it is sufficient to establish the following lemma.
Lemma 26. Assume that $M:[k]^{k} \rightarrow T$ is complete for $\mathcal{Z} \subseteq f^{-1}(0)$. Let l be the output of π in the terminal $M[1,2, \ldots, k]$. Then $z_{l}=0$ for every \mathcal{Z}.

Proof. Since π strongly computes the Q_{k}-communication game for f, it is enough to show that every $z \in \mathcal{Z}$ is i-compatible with $M[1,2, \ldots, k]$ for some $i \in[k]$. Take $g: \mathcal{Z} \rightarrow[k]$ establishing completeness of M for \mathcal{Z}. By definition, z is $g(z)$-compatible with $M[1,2, \ldots, k]$.

Finally, we need to perform an iteration. Assume that h iterations passed and Invariant 25 still holds. Let U_{h} be the set of nodes appearing in M_{h}. Take any function $g: \mathcal{Z}_{h} \rightarrow[k]$ establishing completeness of M_{h} for \mathcal{Z}_{h}.

For any $z \in f^{-1}(0)$ we denote by p_{z} a communication profile of z with respect to U_{h} (we use the same notion of a communication profile as in the proof of Proposition 18). Recall that p_{z} is an element of $\{0,1\}^{U_{h}}$, i.e., a function from U_{h} to $\{0,1\}$. Learner wants to gain some information about the pair $\left(p_{z}, g(z)\right)$. In the beginning, Learner only knows that $(p(z), g(z)) \in$ $\{0,1\}^{U_{h}} \times[k]$. His goal is to narrow down the set of all possible values of the pair $(p(z), g(z))$ to k values. He does so in the same manner as in the proof of Proposition 18. Namely, in each round Learner asks Nature to specify some $(p, c) \in\{0,1\}^{U_{h}} \times[k]$ such that $\left(p_{z}, g(z)\right) \neq(p, c)$. Learner can do this until there are only k pairs from $\left(p_{1}, c_{1}\right), \ldots,\left(p_{k}, c_{k}\right) \in\{0,1\}^{U_{h}} \times[k]$ left which are not rejected by Nature. Learner stores each rejected (p, c) on the working tape so that in the end he knows $\left(p_{1}, c_{1}\right), \ldots,\left(p_{k}, c_{k}\right)$. This takes $2^{\left|U_{h}\right|} \cdot k-k=$ $O(1)$ rounds of the Q_{k}-hypotheses game and $O(1)$ additional bits of memory (we will free this memory once we compute M_{h+1} so that we can use it again in the next iteration). After that, the $(h+1)$ st iteration is finished. Let us observe that for any z which is compatible with the Nature's responses after $h+1$ iterations it holds that $\left(p_{z}, g(z)\right) \in\left\{\left(p_{1}, c_{1}\right), \ldots,\left(p_{k}, c_{k}\right)\right\}$, i.e,

$$
\begin{equation*}
\left(p_{z}, g(z)\right) \in\left\{\left(p_{1}, c_{1}\right), \ldots,\left(p_{k}, c_{k}\right)\right\} \text { for all } z \in \mathcal{Z}_{h+1} . \tag{10}
\end{equation*}
$$

After that, Learner updates M_{h}. He only needs to know $\left(p_{1}, c_{1}\right), \ldots,\left(p_{k}, c_{k}\right)$ (they can be extracted from the content of the working tape) and the light form of π. Namely, Learner determines $M_{h+1}\left[d_{1}, \ldots, d_{k}\right]$ for $\left(d_{1}, \ldots, d_{k}\right) \in[k]^{k}$ as follows. Consider the node $v=M_{h}\left[c_{d_{1}}, \ldots, c_{d_{k}}\right]$. If
v is a terminal, then set $M_{h+1}\left[d_{1}, \ldots, d_{k}\right]=v$. Otherwise, let $i \in[k]$ be the index of the party communicating at v. Look at $p_{d_{i}}$, it is a function from U_{h} to $\{0,1\}$. Define $r=p_{d_{i}}(v)$. Among two edges, starting at v, choose one which is labeled by r. Descend along this edge from v and let the resulting successor of v be $M_{h+1}\left[d_{1}, \ldots, d_{k}\right]$.

Obviously, computing M_{h+1} takes time polynomial in $\operatorname{size}(\pi)$. To show that Invariant 25 is maintained, we have to show that (a) M_{h+1} is $(h+1)$-low and (b) M_{h+1} is complete for \mathcal{Z}_{h+1}.

The first part, (a), holds because each $M_{h+1}\left[d_{1}, \ldots, d_{k}\right]$ is either a terminal or a successor of a node of depth at least h. For (b) we define the following function:

$$
g^{\prime}: \mathcal{Z}_{h+1} \rightarrow[k], \quad g^{\prime}(z)=i, \text { where } i \text { is such that }\left(p_{z}, g(z)\right)=\left(p_{i}, c_{i}\right)
$$

By (10) this definition is correct. We will show that g^{\prime} establishes completeness of M_{h+1} for \mathcal{Z}_{h+1}.

For that, take any $z \in \mathcal{Z}_{h+1}, i \in[k]$ and $\left(d_{1}, \ldots, d_{k}\right) \in[k]^{k}$ such that $d_{i}=$ $g^{\prime}(z)$. We shall show that z is i-compatible with a node $M_{h+1}\left[d_{1}, \ldots, d_{k}\right]$. By definition of g^{\prime}, we have that $g(z)=c_{d_{i}}$. Recall that the function g establishes completeness of M_{h} for \mathcal{Z}_{h}. This means that z is i-compatible with $v=M\left[c_{d_{1}}, \ldots, c_{d_{k}}\right]$. If v is a terminal, then $M_{h+1}\left[d_{1}, \ldots, d_{k}\right]=v$ and there is nothing left to prove.

Otherwise, $v \in V \backslash T$. Let j be the index of the party communicating at v. By definition, $M_{h+1}\left[d_{1}, \ldots, d_{k}\right]$ is a successor of v. If $j \neq i$, then any successor of v is i-compatible with z (because the j th party communicates at v, not the i th one). Finally, assume that $j=i$. The node $M_{h+1}\left[d_{1}, \ldots, d_{k}\right]$ is obtained from v by descending along the edge which is labeled by $r=p_{d_{i}}(v)$. Hence, to show that z is i-compatible with $M_{h+1}\left[d_{1}, \ldots, d_{k}\right]$, we should verify that the i th party transmits r at v on input z. Recall that $g^{\prime}(z)=d_{i}$, which by definition of g^{\prime} means that $p_{z}=p_{d_{i}}$. That is, $p_{d_{i}}$ is the communication profile of z with respect to U_{h}. In particular, $r=p_{d_{i}}(v)=p_{z}(v)$ is the bit transmitted by the i th party on input z at v, as required.

In the same argument, one can obtain an analog of the previous theorem for the R_{k}-case.
Theorem 27. For every constant $k \geq 2$ there exists a polynomial-time algorithm A such that the following holds. Assume that $f \in R_{k}$ and π is a dag-like protocol which strongly computes the R_{k}-communication game for f. Then, given the light form of π, the algorithm A outputs an R_{k}-circuit $C \leq f$ such that depth (C) is linear in depth (π) and $\operatorname{size}(C)$ is polynomial in size (π).

7 Derivation of Theorems 1 and 3

In this section, we obtain Theorems 1 and 3 by devising protocols strongly computing the corresponding Q_{k}-communication games. Unfortunately, establishing strong computability requires diving into straightforward but tedious technical details, even for simple protocols.

Alternative proof of Theorem 1. We will show that there exists an $O(\log n)$ depth protocol π with a polynomial-time computable light form, strongly computing the Q_{2}-communication game for $\mathrm{MAJ}_{2 n+1}$. By Theorem 24, this means that there is a polynomial-time computable $O(\log n)$-depth $\mathrm{MAJ}_{3}{ }^{-}$ formula $F \leq \mathrm{MAJ}_{2 n+1}$. From the self-duality of $\mathrm{MAJ}_{2 n+1}$ and MAJ_{3} it follows that F computes $\mathrm{MAJ}_{2 n+1}$.

Due to the AKS sorting network, there exists a polynomial-time computable $O(\log n)$-depth monotone formula F^{\prime} for $\mathrm{MAJ}_{2 n+1}$. Consider the following communication protocol π. The tree of π coincides with the tree of F^{\prime}. Inputs to F^{\prime} will be leafs of π. In a leaf containing an input variable x_{i} the output of the protocol π is i. Remaining nodes of π are \wedge-gates and \vee-gates. The first party communicates in \wedge-gates, while the second party communicates in \vee-gates. Let us now define how the parties communicate.

Fix an \wedge-gate g (which belongs to the first party). Let g_{0}, g_{1} be gates that are fed to g, i.e., $g=g_{0} \wedge g_{1}$. There are two edges, starting at g, one leads to g_{0} (and is labeled by 0) and the other leads to g_{1} (and is labeled by 1). Take an input $a \in \operatorname{MAJ}_{2 n+1}^{-1}(0)$ to the first party. Having input a, the first party transmits the bit $r=\min \left\{c \in\{0,1\} \mid g_{c}(a)=0\right\}$ at the gate g. If the minimum is over the empty set, we set $r=0$.

Take now an \vee-gate h (belonging to the second party). Similarly, there are two edges starting at h, one leads to a gate h_{0} (and is labeled by 0) and the other leads to a gate h_{1} (and is labeled by 1). Take an input $b \in \operatorname{MAJ}_{2 n+1}^{-1}(0)$ to the second party. Having input b, the second party transmits the bit $r=\min \left\{c \in\{0,1\} \mid h_{c}(\neg b)=1\right\}$ at the gate h. If the minimum is over the empty set, then we set $r=0$. Here \neg denotes the bit-wise negation. Description of the protocol π is finished.

Clearly, the protocol π is of depth $O(\log n)$ and its light form is polynomial-time computable. It remains to argue that the protocol strongly computes the Q_{2}-communication game for $\mathrm{MAJ}_{2 n+1}$. Nodes of the protocol may be identified with gates of F^{\prime}. Consider any path $p=\left\langle e_{1}, \ldots, e_{m}\right\rangle$ in the protocol π which starts in the output gate g^{0}. Assume that e_{j} is an edge from g^{j-1} to g^{j}. We shall show the following: if $a \in \operatorname{MAJ}_{2 n+1}^{-1}(0)$ is 1compatible with p, then $g^{0}(a)=g^{1}(a)=\ldots=g^{m}(a)=0$. Indeed, $g^{0}(a)=0$
holds because F^{\prime} computes $\operatorname{MAJ}_{2 n+1}$. Now, assume that $g^{j}(a)=0$ is already proved. If g^{j} is an- \vee gate, then $g^{j+1}(a)=0$ just because g^{j+1} feds to g^{j}. Otherwise, g^{j} is an \wedge-gate which therefore belongs to the first party. Let $r \in\{0,1\}$ be the label of the edge e_{j+1}. Note that $g^{j+1}=g_{r}^{j}$, where g_{0}^{j}, g_{1}^{j} are two gates which are fed to g^{j}. Since a is 1-compatible with p, it holds that r coincides with the bit that the first party transmits at g^{j} on input a, i.e., with $\min \left\{c \in\{0,1\} \mid g_{c}^{j}(a)=0\right\}$. The set over which the minimum is taken is non-empty, because $g^{j}(a)=0$. In particular, r belongs to this set, which means that $g^{j+1}(a)=g_{r}^{j}(a)=0$, as required.

Similarly, one can verify that if $b \in \operatorname{MAJ}_{2 n+1}^{-1}(0)$ is 2-compatible with p, then $g^{0}(\neg b)=g^{1}(\neg b)=\ldots=g^{m}(\neg b)=0$. Overall, we get that if a leaf l is 1 -compatible (resp., 2-compatible) with a (resp., b) and l contains a variable x_{i}, then $a_{i}=0$ (resp., $\neg b_{i}=1$). Hence the protocol strongly computes the Q_{2}-communication game for $\mathrm{MAJ}_{2 n+1}$.

Proof of Theorem 3. We will use the same protocol as in the proof of Corollary 23. This time, however, we have to define its light form more explicitly. We will obtain an $O\left(\log ^{2} n\right)$-depth polynomial-size dag-like protocol with a polynomial-time computable light form, which strongly computes the $Q_{k^{-}}$ communication game for $\mathrm{THR}_{n+1}^{k n+1}$. By Theorem 24, this means that there is a polynomial-time computable $O\left(\log ^{2} n\right)$-depth polynomial-size Q_{k}-circuit $C \leq \operatorname{THR}_{n+1}^{k n+1}$. By an argument from Corollary 23, the circuit C coincides with $\mathrm{THR}_{n+1}^{k n+1}$.

We will use the same tree T as in the proof of Corollary 23. That is, T is an $O(\log n)$-depth tree with $k n+1$ leafs. We identify its leafs with elements of $[k n+1]$. Every node v of T is associated with the set $T_{v} \subseteq[k n+1]$ of leafs that are descendants of v. We also use a notation $\operatorname{supp}(x)=\left\{i \in[k n+1] \mid x_{i}=1\right\}$ for $x \in\{0,1\}^{k n+1}$.

Let us specify the underlying dag G of our protocol π. For a node v of T, let \mathcal{S}_{v} be the set of all tuples $\left(s_{1}, s_{2}, \ldots, s_{k}\right) \in\{0,1, \ldots, k n+1\}^{k}$ such that $s_{1}+s_{2}+\ldots+s_{k}<\left|T_{v}\right|$. For every node v of T and for every $\left(s_{1}, s_{2}, \ldots, s_{k}\right) \in \mathcal{S}_{v}$ the dag G will contain a node identified with a tuple $\left(v, s_{1}, s_{2}, \ldots, s_{k}\right)$. These nodes of G will be called main nodes (there will be some other nodes too). Observe that the number of main nodes is polynomial in n. The starting node of G will be (r, n, \ldots, n), where r is the root of T. Note that if l is a leaf of T, then $\left|T_{l}\right|=1$. Hence, the only main node having l as the first coordinate is $(l, 0, \ldots, 0)$. The set of terminals of π will coincide with the set of all main nodes of the form $(l, 0, \ldots, 0)$, where l is a leaf of T. The output of π in $(l, 0, \ldots, 0)$ is l.

The communication in π is arranged as follows. First, we assume for
simplicity that every party has a vector with exactly n ones (if there are less than n ones, one can add a necessary amount of ones to the input). The communication proceeds in $O(\log n)$ phases. In the beginning of each phase, the parties belong to some main node $\left(v, s_{1}, \ldots, s_{k}\right)$. Then the first party sends two non-negative integers that sum up to s_{1}. After that, the second party sends two non-negative integers that sum up to s_{2}, and so on. More specifically, if the input to the i th party is $x \in\{0,1\}^{k n+1}$ and $\left|T_{v} \cap \operatorname{supp}(x)\right| \leq$ s_{i}, then the i th party sends $\left|T_{v_{0}} \cap \operatorname{supp}(x)\right|$ and $\left|T_{v_{1}} \cap \operatorname{supp}(x)\right|$, where v_{0} and v_{1} are two successors of v. Otherwise, it sends any two numbers that sum up to s_{i}.

When all the numbers are sent, the parties move to some other main node. More specifically, let a_{i} and b_{i} be numbers sent by the i th party. If $a_{1}+\ldots+a_{k}<\left|T_{v_{0}}\right|$, the parties move the main node $\left(v_{0}, a_{1}, \ldots, a_{k}\right)$. Now, assume that $a_{1}+\ldots+a_{k} \geq\left|T_{v_{0}}\right|$. We claim that in this case we have $b_{1}+\ldots+b_{k}<\left|T_{v_{1}}\right|$. This is because by definition $\left(a_{1}+\ldots+a_{k}\right)+\left(b_{1}+\right.$ $\left.\ldots+b_{k}\right)=s_{1}+\ldots+s_{k}<\left|T_{v}\right|=\left|T_{v_{0}}\right|+\left|T_{v_{1}}\right|$. So if $a_{1}+\ldots+a_{k} \geq\left|T_{v_{0}}\right|$, the parties move to the main node $\left(v_{1}, b_{1}, \ldots, b_{k}\right)$.

Observe that if the input to the i th party, x, has exactly n ones, then throughout any execution of the protocol we have $\left|T_{v} \cap \operatorname{supp}(x)\right|=s_{i}$, where $\left(v, s_{1}, \ldots, s_{k}\right)$ is our current main node. In other words, if a vector $x \in\{0,1\}^{k n+1}$ with n ones is i-compatible with a main node $\left(v, s_{1}, \ldots, s_{k}\right)$, then $\left|T_{v} \cap \operatorname{supp}(x)\right|=s_{i}$. This implies that π strongly computes the $Q_{k^{-}}$ communication game for $\operatorname{THR}_{n+1}^{k n+1}$. Indeed, if a terminal $(l, 0, \ldots, 0)$ is i-compatible with x, then $|l \cap \operatorname{supp}(x)|=0$, that is, $x_{l}=0$. In other words, the output of π in $(l, 0, \ldots, 0)$ is a correct answer for x, as required.

Overall, the light form of π looks as follows. It consists of polynomially many main nodes that are arranged in an $O(\log n)$-depth tree. Each main node has an $O(\log n)$-depth protocol attached to it. Leafs of this protocol are merged with some main nodes on the next level of T. Thus, π is of depth $O\left(\log ^{2} n\right)$ and polynomial size, and its light form is polynomial-time computable.

8 Open problems

- Can the Q_{k}-communication game for $\mathrm{THR}_{n+1}^{k n+1}$ be solved in $o\left(\log ^{2} n\right)$ bits of communication for $k \geq 3$? Equivalently, can $\operatorname{THR}_{n+1}^{k n+1}$ be computed by an $o\left(\log ^{2} n\right)$-depth Q_{k}-circuit? Or at least by an $o\left(\log ^{2} n\right)$ depth R_{k}-circuit?
- Are there any other interesting functions in Q_{k} and R_{k} which can be
analyzed with our technique?

References

[1] Ajtai, M., Komlós, J., and Szemerédi, E. An 0 (n $\log \mathrm{n}$) sorting network. In Proceedings of the fifteenth annual ACM symposium on Theory of computing (1983), pp. 1-9. https://doi.org/10.1145/ 800061.808726.
[2] Cohen, G., Damgård, I. B., Ishai, Y., Kölker, J., Miltersen, P. B., Raz, R., and Rothblum, R. D. Efficient multiparty protocols via log-depth threshold formulae. In Annual Cryptology Conference (2013), Springer, pp. 185-202. https://doi.org/10.1007/ 978-3-642-40084-1_11.
[3] Dinur, I., and Meir, O. Toward the KRW composition conjecture: Cubic formula lower bounds via communication complexity. computational complexity 27, 3 (2018), 375-462. https://doi.org/10.1007/ s00037-017-0159-x.
[4] Gavinsky, D., Meir, O., Weinstein, O., and Wigderson, A. Toward better formula lower bounds: an information complexity approach to the KRW composition conjecture. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing (2014), pp. 213-222. https://doi.org/10.1145/2591796.2591856.
[5] Goldreich, O. Valiant's polynomial-size monotone formula for majority, 2011. http://www.wisdom.weizmann.ac.il/~oded/PDF/ mono-maj.pdf.
[6] Göös, M., and Pitassi, T. Communication lower bounds via critical block sensitivity. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing (2014), pp. 847-856. https: //doi.org/10.1145/2591796.2591838.
[7] Gupta, A., and Mahajan, S. Using amplification to compute majority with small majority gates. Computational Complexity 6, 1 (1996), 46-63. https://doi.org/10.1007/BF01202041.
[8] Jukna, S. Boolean function complexity: advances and frontiers, vol. 27. Springer Science \& Business Media, 2012. https://doi.org/10.1007/ 978-3-642-24508-4.
[9] Karchmer, M., Raz, R., and Wigderson, A. Super-logarithmic depth lower bounds via the direct sum in communication complexity. Computational Complexity 5, 3-4 (1995), 191-204. https://doi.org/ 10.1007/BF01206317.
[10] Karchmer, M., and Wigderson, A. Monotone circuits for connectivity require super-logarithmic depth. SIAM Journal on Discrete Mathematics 3, 2 (1990), 255-265. https://doi.org/10.1137/ 0403021.
[11] Rao, A., and Yehudayoff, A. Communication Complexity: and Applications. Cambridge University Press, 2020.
[12] Raz, R., and McKenzie, P. Separation of the monotone NC hierarchy. In Proceedings 38th Annual Symposium on Foundations of Computer Science (1997), IEEE, pp. 234-243. https://doi.org/10. 1109/SFCS. 1997.646112.
[13] Sokolov, D. Dag-like communication and its applications. In International Computer Science Symposium in Russia (2017), Springer, pp. 294-307. https://doi.org/10.1007/978-3-319-58747-9_26.
[14] Valiant, L. G. Short monotone formulae for the majority function. Journal of Algorithms 5, 3 (1984), 363-366. https://doi.org/10. 1016/0196-6774(84) 90016-6.

A Direct proof of Theorem 1

We show that there exists a deterministic polynomial-time algorithm performing the following transformation

- Input: a monotone formula F of depth d computing $\mathrm{MAJ}_{2 n+1}$;
- Output: a MAJ_{3}-formula Φ of depth $d+O(\log n)$ computing MAJ $_{2 n+1}$.

The existence of such an algorithm implies Theorem 1. Indeed, take the AKS sorting network and extract from it a polynomial-time computable $O(\log n)$-depth monotone formula F computing $\mathrm{MAJ}_{2 n+1}$. Then just plugin F into the transformation above. So it only remains to explain how to perform this transformation in polynomial time.

In the proof by $\{0,1\}_{\leq n}^{2 n+1}$ we denote the set of all $(2 n+1)$-bit vectors with at most n ones. This is also the set of vectors where $\mathrm{MAJ}_{2 n+1}$ equals 0 . For $x \in\{0,1\}^{2 n+1}$ we denote by $\neg x$ the bit-wise negation of x.

The following observation simplifies our task.
Observation 28. Assume that Φ is a MAJ_{3}-formula and

$$
\Phi(x)=0 \text { for any } x \in\{0,1\}_{\leq n}^{2 n+1}
$$

Then Φ computes $\mathrm{MAJ}_{2 n+1}$.
Proof. It is already given that Φ equals 0 everywhere, where $M A J_{2 n+1}$ equals 0 . It remains to show that Φ equals 1 everywhere, where $M A J_{2 n+1}$ equals 1. For that, we take any $x \in\{0,1\}^{2 n+1}$ with at least $n+1$ ones and show that $\Phi(x)=1$. Formula Φ is constructed from self-dual gates and hence computes a self-dual function (recall that a Boolean function is selfdual if it takes opposite values in opposite vertices of the Boolean cube). This means that $\Phi(x)=\neg \Phi(\neg x)$. Finally, notice that $\Phi(\neg x)=0$ because $\neg x \in\{0,1\}_{\leq n}^{2 n+1}$.

Construction can be naturally split into two independent steps.

- Step 1. For any two distinct $i, j \in[2 n+1]$ construct from F a $\mathrm{MAJ}_{3}{ }^{-}$ formula $\Phi_{i, j}$ of depth d (i.e., of the same depth as F) such that

$$
\Phi_{i, j}(x)=0 \text { for any } x \in\{0,1\}_{\leq n}^{2 n+1} \text { such that } x_{i}+x_{j}=1
$$

- Step 2. Assemble from the formulas $\Phi_{i, j}$ a MAJ_{3}-formula Φ of depth $d+O(\log n)$ satisfying

$$
\Phi(x)=0 \text { for all } x \in\{0,1\}_{\leq n}^{2 n+1}
$$

By Observation 28 the formula Φ from the step 2 will compute $\mathrm{MAJ}_{2 n+1}$.
Step 1. We obtain $\Phi_{i, j}$ from F in a way described in Figure 2.

Figure 2: Transforming F into $\Phi_{i, j}$.
We only have to show that for all $x \in\{0,1\}_{\leq n}^{2 n+1}$ with $x_{i}+x_{j}=1$ we have $\Phi_{i, j}(x)=0$. The argument is different for the following two cases.

- Case 1: $x_{i}=0$ and $x_{j}=1$.
- Case 2: $x_{i}=1$ and $x_{j}=0$.

Both cases rely on the following observation. Notice that $\Phi_{i, j}(x)=$ $\operatorname{MAJ}_{2 n+1}(x)$ for all $x \in\{0,1\}^{2 n+1}$ with $x_{i}=0, x_{j}=1$. This is because when we plug in $x_{i}=0, x_{j}=1$ into $\Phi_{i, j}$, we obtain a formula which is equivalent to F. Indeed, every MAJ_{3}-gate in $\Phi_{i, j}$ that were obtained from an \wedge-gate of F turns back into an \wedge-gate. Similarly, every MAJ_{3}-gate in $\Phi_{i, j}$ that were obtained from an \vee-gate of F turns back into an \vee-gate. To see this, note that $\operatorname{MAJ}_{3}\left(g_{1}, g_{2}, 0\right)=g_{1} \wedge g_{2}$ and $\operatorname{MAJ}_{3}\left(g_{1}, g_{2}, 1\right)=g_{1} \vee g_{2}$.

Case 1. This is an immediate consequence of the above observation. Formula $\Phi_{i, j}$ coincides with $\operatorname{MAJ}_{2 n+1}$ every time $x_{i}=0, x_{j}=1$, and for $x \in\{0,1\}_{\leq n}^{2 n+1}$ we have $\operatorname{MAJ}_{2 n+1}(x)=0$.

Case 2. Here we use a self-duality argument. Consider the bit-wise negation of x. Since $\neg x$ has at least $n+1$ ones, we have $\operatorname{MAJ}_{2 n+1}(\neg x)=1$. Next, since $(\neg x)_{i}=0,(\neg x)_{j}=1$, we have $\Phi_{i, j}(\neg x)=\operatorname{MAJ}_{2 n+1}(\neg x)=1$ by our observation. Finally, due to self-duality, $\Phi_{i, j}(x)=\neg \Phi_{i, j}(\neg x)=0$, as required.

Step 2. We show that for any $S \subseteq[2 n+1],|S| \geq 2$ one can construct (in deterministic polynomial time) a MAJ_{3}-formula Φ_{S} of depth at most $d+1+\log _{9 / 8}(|S|)$ such that:

$$
\Phi_{S}(x)=0 \text { for all } x \in\{0,1\}_{\leq n}^{2 n+1} \text { such that } x_{i}=0 \text { for some } i \in S
$$

By setting $\Phi=\Phi_{[2 n+1]}$ we obtain a formula which is 0 everywhere on $\{0,1\}_{\leq n}^{2 n+1}$, as required. Indeed, every $x \in\{0,1\}_{\leq n}^{2 n+1}$ has a 0 -coordinate in $[2 n+1]$.

The construction is recursive. Assume first that $|S| \geq 3$. Partition S into 3 disjoint subsets S_{1}, S_{2}, S_{3} of sizes $\lfloor|S| / 3\rfloor,\lfloor|S| / 3\rfloor$ and $|S|-2\lfloor|S| / 3\rfloor$. Construct recursively $\Phi_{S_{1} \cup S_{2}}, \Phi_{S_{1} \cup S_{3}}, \Phi_{S_{2} \cup S_{3}}$ and then set

$$
\Phi_{S}=\operatorname{MAJ}_{3}\left(\Phi_{S_{1} \cup S_{2}}, \Phi_{S_{1} \cup S_{3}}, \Phi_{S_{2} \cup S_{3}}\right) .
$$

If $|S|=2$ and $S=\{i, j\}$, set

$$
\Phi_{\{i, j\}}=\operatorname{MAJ}_{3}\left(\Phi_{i, j}, x_{i}, x_{j}\right),
$$

where $\Phi_{i, j}$ is from the previous step. Description of the construction is finished. It remains to explain why this construction is correct, why the depth of Φ_{S} is at most $d+1+\log _{9 / 8}(|S|)$ and why the construction takes polynomial time.

- A recursive call is always for sets of smaller size. More specifically, it holds that:

$$
\begin{equation*}
\left|S_{1} \cup S_{2}\right|,\left|S_{1} \cup S_{3}\right|,\left|S_{2} \cup S_{3}\right| \leq \frac{8}{9} \cdot|S| \tag{11}
\end{equation*}
$$

Indeed, the sizes of $S_{1} \cup S_{2}, S_{1} \cup S_{3}, S_{2} \cup S_{3}$ do not exceed $|S|-\lfloor|S| / 3\rfloor \leq$ $|S|-|S| / 3+2 / 3=2 / 3 \cdot(|S|+1) \leq 2 / 3 \cdot(|S|+|S| / 3)=8 / 9 \cdot|S|$.

- We now show, by induction on $|S|$, that $\Phi_{S}(x)=0$ for all $x \in$ $\{0,1\}_{\leq n}^{2 n+1}$ that have a 0 -coordinate in S. First, consider the case $S=\{i, j\}$. If there are exactly one 0 -coordinate among i, j, then by definition $\Phi_{i, j}(x)=0$ and hence $\Phi_{\{i, j\}}(x)=\operatorname{MAJ}_{3}\left(\Phi_{i, j}(x), x_{i}, x_{j}\right)=$ $\operatorname{MAJ}_{3}(0,0,1)=0$. If both $x_{i}=0$ and $x_{j}=0$, then $\Phi_{\{i, j\}}(x)=$ $\operatorname{MAJ}_{3}\left(\Phi_{i, j}(x), 0,0\right)=0$.
Now, consider the case $|S| \geq 3$. A 0 -coordinate of x lying in S lies also in exactly 2 sets out of $S_{1} \cup S_{2}, S_{1} \cup S_{3}, S_{2} \cup S_{3}$. Hence, by the induction hypothesis, among $\Phi_{S_{1} \cup S_{2}}(x), \Phi_{S_{1} \cup S_{3}}(x), \Phi_{S_{2} \cup S_{3}}(x)$ there are at least 2 zeroes. This means that $\Phi_{S}(x)=$ $\operatorname{MAJ}_{3}\left(\Phi_{S_{1} \cup S_{2}}(x), \Phi_{S_{1} \cup S_{3}}(x), \Phi_{S_{2} \cup S_{3}}(x)\right)=0$.
- Again, by induction on $|S|$ one can show that

$$
\operatorname{depth}(S) \leq d+1+\log _{9 / 8}(|S|)
$$

For $S=\{i, j\}$ the depth of $\Phi_{\{i, j\}}$ is $\operatorname{depth}\left(\Phi_{i, j}\right)+1=d+1 \leq$ $d+1+\log _{5 / 4}(|S|)$. For $|S| \geq 3$ assume that the claim is proved for $\Phi_{S_{1} \cup S_{2}}, \Phi_{S_{1} \cup S_{3}}, \Phi_{S_{2} \cup S_{3}}$. Then

$$
\begin{aligned}
\operatorname{depth}\left(\Phi_{S}\right) & =1+\max \left\{\operatorname{depth}\left(\Phi_{S_{1} \cup S_{2}}\right), \operatorname{depth}\left(\Phi_{S_{1} \cup S_{3}}\right), \operatorname{depth}\left(\Phi_{S_{2} \cup S_{3}}\right)\right\} \\
& \leq 1+d+1+\log _{9 / 8}\left(\frac{8}{9} \cdot|S|\right) \\
& =d+1+\log _{9 / 8}(|S|) .
\end{aligned}
$$

In the second line, we use the induction hypothesis and (11).

- Similarly, the tree of recursive calls for Φ_{S} has depth at most $\log _{9 / 8}(|S|)$ and hence polynomial size. Therefore, the whole construction takes polynomial time.

[^0]: *Alexander.Kozachinskiy@warwick.ac.uk. Supported by the EPSRC grant EP/P020992/1 (Solving Parity Games in Theory and Practice).
 † podolskii@mi-ras.ru

[^1]: ${ }^{1}$ For technical convenience, in this paper we always assume that the Majority function has an odd number of inputs.
 ${ }^{2}$ If we would have constants, we could easily express the disjunction and the conjuction by $\operatorname{MAJ}_{3}(x, y, 0)=x \wedge y, \operatorname{MAJ}_{3}(x, y, 1)=x \vee y$.

[^2]: ${ }^{3}$ We should only care about the size in case of Theorem 3, because depth $O(\log n)$ immediately gives polynomial size.

