
State Complexity of Chromatic Memory in
Infinite-Duration Games

Alexander Kozachinskiy∗

January 25, 2022

Abstract

A major open problem in the area of infinite-duration games is to character-
ize winning conditions that are determined in finite-memory strategies. Infinite-
duration games are usually studied over edge-colored graphs, with winning condi-
tions that are defined in terms of sequences of colors. In this paper, we investigate
a restricted class of finite-memory strategies called chromatic finite-memory strate-
gies. While general finite-memory strategies operate with sequences of edges of a
game graph, chromatic finite-memory strategies observe only colors of these edges.

Recent results in this area show that studying finite-memory determinacy is
more tractable when we restrict ourselves to chromatic strategies. On the other
hand, as was shown by Le Roux (CiE 2020), determinacy in general finite-memory
strategies implies determinacy in chromatic finite-memory strategies. Unfortu-
nately, this result is quite inefficient in terms of the state complexity: to replace
a winning strategy with few states of general memory, we might need much more
states of chromatic memory. The goal of the present paper is to find out the exact
state complexity of this transformation.

For every winning condition and for every game graph with n nodes we show
the following: if this game graph has a winning strategy with q states of general
memory, then it also has a winning strategy with (q + 1)n states of chromatic
memory. We also show that this bound is almost tight. For every q and n, we
construct a winning condition and a game graph with n + O(1) nodes, where one
can win with q states of general memory, but not with qn − 1 states of chromatic
memory.

1 Introduction
We study deterministic, two-player, turn-based, infinite-duration games on finite arenas.
An arena is a finite directed graph whose set of nodes V is partitioned into two subsets

∗kozlach@mail.ru

1

V0, V1 ⊆ V . A game over such an arena is played as follows. Two players (in this paper,
we call them Player 0 and Player 1) are traveling over the nodes of the graph. When
they are in a node from V0, Player 0 decides where to go next. Similarly, when they are
in a node from V1, Player 1 decides where to go next. Players can move only along edges
of the graph.

After infinitely many turns, this process produces an infinite path in our graph. A
winning condition determines, which infinite paths are winning for Player 0 and which
are for Player 1. In the literature, one usually defines winning conditions through colors.
Namely, fix a set C of colors. Then color edges of an arena into elements of C. Once this
is done, any subset W ⊆ Cω defines a winning condition in the following way. Take an
infinite path in our graph. If its “coloring” (that is, the sequence of colors of its edges)
belongs to W , we make this path winning for Player 0. Otherwise, we make this path
winning for Player 1. In this paper, we consider only winning conditions that are defined
through colors.

A utility of colors is that we do not have to define a winning condition for each arena
separately. Indeed, once we fix a set of colors C and a subset W ⊆ Cω, we can treat W
as a winning condition in any arena with edges colored by elements of C.

A major open problem in this area is to characterize winning conditions that are
determined in finite-memory strategies. This is motivated by applications to reactive
synthesis [13], where infinite-duration games on graphs model an interaction between a
system and the environment. Finite-memory determinacy over infinite arenas has also
been used in decidability of logical theories [12].

Let us discuss the concept of a finite-memory strategy in more detail. The games we
are studying are of infinite duration. This means that as a game goes on, the players need
more and more memory to remember everything what has happened so far. However, a
player might have a smart strategy which does not require the whole “transcript” of the
previous development of the game. For instance, a strategy might only require to know
whether the number of steps made so far is even or odd. In this case, 1 bit of memory
is sufficient to “implement” this strategy (we simply reverse the value of this bit each
time we make a step). In general, if there exists a constant k > 0 such that our strategy
never stores more than k bits of information during the play, then we call this strategy
finite-memory.

More formally, finite-memory strategies store information through memory struc-
tures. A memory structureM is a finite automaton whose input alphabet is the set of
edges of an arena. We call a strategy of one of the players anM-strategy if this strategy
stores information according toM. More specifically, one can imagine that, say, Player
0 carries M with them during the play. In each turn, Player 0 takes the edge along
which the game goes on in this turn, and feeds this edge intoM. Then, in each moment
of the game, the current state ofM informally represents the memory of Player 0. If a
strategy S of this player never requires anything besides the current state of M, then
we call S anM-strategy.

We call S a finite-memory strategy if it is anM-strategy for some memory structure
M. If a memory structure M has q states, then we call any M-strategy a q-state

2

strategy.
We say that a winning condition W ⊆ Cω is finite-memory determined for Player

i ∈ {0, 1} if in any arena, where this player has a winning strategy w.r.t. W , this player
also has a finite-memory winning strategy. In practice, we are interested in finite-memory
winning strategies with as few states as possible. This leads to a concept of memory
complexity. To define it, we first have to fix a parametrization of arenas by natural
numbers. For every n ∈ N, there has to be only finitely many arenas where the value of
the parameter does not exceed n. When the set of colors is finite, one natural example
of such a parameter is the number of nodes. Now, the memory complexity of a finite-
memory determined winning condition W for Player i ∈ {0, 1} is the following function.
For every n ∈ N, it maps n to smallest q such that in all arenas, where Player i can win
w.r.t. W and where the value of the parameter does not exceed n, Player i has a q-state
winning strategy.

There has been the following progress in the problem of characterizing finite-memory
determined winning conditions. In 2005, Gimbert and Zielonka [7] obtained a sufficient
and necessary condition for determinacy in memory-less strategies (that is, in strategies
that are defined over “useless” 1-state memory structures). Since then, several conditions
that are sufficient (but not necessary) for finite-memory determinacy were established
in the literature [11, 4].

Recently, there have been advances in studying chromatic memory complexity. In
contrast to the general memory complexity, the chromatic memory complexity takes into
account only so-called chromatic strategies (we define this kind of strategies in the next
subsection). Bouyer et al. [3] obtained a complete characterization of winning conditions
(and, more generally, of preference relations) with constant chromatic memory complex-
ity. It is open to extend this result to winning conditions with constant1 general memory
complexity. This motivates a study of the relationship between chromatic and general
memory complexities – as, potentially, there might be a way of converting results about
chromatic memory into results about general memory. The present paper is devoted to
this kind of questions.

1.1 Chromatic strategies
A chromatic strategy is a strategy which, to make its moves, only needs to know the
sequence of colors along a current play. That is, chromatic strategies use only a part of
the description of a current play; the full description consists of the sequence of edges
that were played so far.

We are interested in chromatic strategies that are additionally finite-memory. Such
strategies can be defined through chromatic memory structures. A memory structure

1As we mentioned, memory complexity depends on the parametrization of the arenas. However,
the class of winning conditions with constant memory complexity is independent of the choice of the
parametrization. Indeed, these are winning conditions for which there exists a constant q such that all
arenas require at most q states of memory.

3

is chromatic if its transition function does not distinguish edges of the same color. Al-
ternatively, a chromatic memory structure can be viewed as a finite automaton whose
input alphabet is not the set of edges, but rather the set of colors. That is, each time
we feed an edge into a chromatic memory structure, it only takes as an input the color
of this edge.

In this paper, we study the following problem. Fix a winning condition and an arena.
Suppose that Player i has a winning strategy with q states of general memory in this
arena. What is the minimal Q such that Player i has a winning strategy with Q states
of chromatic memory in this arena?

It is not even obvious whether Q is always finite (in other words, whether determi-
nacy in general finite-memory strategies implies determinacy in chromatic finite-memory
strategies). The finiteness of Q was proved by Le Roux [10]. In this paper, we obtain
a tight bound on Q in terms of q and the number of nodes of an arena. But before
presenting this in more detail, let us give an example where Q is strictly larger than q.

1.2 Example

u v
0 0 1 1 1

0

0

1 1

1

1

0

0

Figure 1: Example.

In this example, the set of colors is {0, 1}, the starting node is u, and Player 0
is the one to move everywhere. Assume that the goal of Player 0 is to maximize the
maximum number of consecutive 1’s in the play. The best number Player 0 can achieve
is 5. Namely, Player 0 can go to v, then to the loop and, after returning to v, to the
right. Note that we do different things at v when we are there for the first time and
when for the second time. That is, the content of our memory has to be different at
these moments. This can be realized with a 2-state memory structure which changes its
state from “has not been to v” to “has been to v” after seeing any edge from v. However,
such a memory structure is not chromatic – it does different things for edges of the same
color.

In fact, one can show that to attain 5 in this problem, we require Q ≥ 3 states
of chromatic memory. Indeed, when we first come to v, we have to go to the loop –
otherwise the maximum number of consecutive 1’s will be 3. Now, when we return to v,

4

our memory has to be different from what it was the first time – otherwise we will stay on
the loop forever, and the maximum number of consecutive 1’s will be 4. Therefore, our
chromatic memory structure has to come into different states on 0011 and on 0011001111.
It can be checked via a computer search that no 2-state deterministic automaton over
the alphabet {0, 1} can distinguish these two words.

1.3 Our contribution
As we mentioned, Le Roux has shown [10] that determinacy in general finite-memory
strategies implies determinacy in chromatic finite-memory strategies. More specifically,
Le Roux obtained the following bound. Fix an arena A with n nodes and a winning
conditionW . Assume that Player 0 has inA a q-state strategy which is winning w.r.t.W .
Then Player 0 also has inA a 2q(n2+1)-state chromatic strategy which is winning w.r.t.W .

In fact, Le Roux obtained this as a corollary of a more general result. Namely, he
studied a problem of the uniformization of winning strategies. In this problem, given an
equivalence relation on the set of finite paths of the arena, we want a winning strategy
which does the same thing on paths from the same equivalence class. In our case, the
equivalence relation is “to have the same sequence of colors and the same endpoint”. Let
us also mention that Le Roux obtained this result for a more general class of games than
we consider in this paper – for deterministic concurrent games. In these games, in each
turn two players make two moves simultaneously, and then one computes the next node
via some predetermined transition function.

The summary of our results. First, we obtain an improvement of the aforemen-
tioned result of Le Roux. Namely, for any winning conditionW and for any arena A with
n nodes we show the following: if Player 0 has in A a q-state winning strategy w.r.t. W ,
then Player 0 also has in A a (q + 1)n-state chromatic winning strategy w.r.t W . Of
course, the same result holds for Player 1. We also provide an analog of this result for
preference relations, with slightly worse bound Q ≤ (qn + 1)n. Finally, we show that
our upper bound is essentially tight. Namely, for every n and q we provide a winning
condition W and an arena A with n + 3 nodes, where Player 0 has a winning q-state
strategy w.r.t. W , but no winning chromatic strategy with less than qn states.

In fact, our upper bounds hold for deterministic concurrent games as well. However,
to simplify the exposition, we prove them only for turn-based games.

What consequences does it have for the memory complexity? The bound of Le Roux
means that the chromatic memory complexity is at most exponential in the general
memory complexity and in the number of nodes. Our improvement is a removal of the
exponential dependency on the general memory complexity. Still, there is an exponential
dependency on the number of nodes. Note that this exponential dependency turns
into just a linear dependency if we measure memory not in states but in bits. As a
consequence, we obtain that for a class “PSPACE” of winning conditions with polynomial
bit-memory complexity (in the number of nodes), it is unimportant whether we use
chromatic or general strategies.

5

Unfortunately, our lower bound does not provide any separation between the chro-
matic and the general memory complexity. We only provide an exponential separation
between the chromatic and the general memory in individual arenas, using different
winning conditions for different arenas. It is not clear how to combine these winning
conditions into a single one for which the general memory grows more slowly than the
chromatic memory. We return to this problem in the next subsection.

1.4 Other related works and open problems
Chromatic finite-memory strategies were first studied by Kopczyński [9] in 2008. He
introduced the following notation for winning conditions with constant memory com-
plexity. For i ∈ {0, 1} and for a winning condition W ⊆ Cω, let mmi(W) denote the
minimal q such that for every finite arena the following holds: if Player i has a winning
strategy w.r.t.W in this arena, then Player i has also a q-state winning strategy w.r.t.W
in this arena. If no such q exists, then we set mmi(W) = +∞. That is, W has con-
stant memory complexity for Player i if and only if mmi(W) is finite. Kopczyński also
introduced an analogue of this notation for chromatic strategies. Namely, let mmχ

i (W)
denote the minimal q such that for every finite arena the following holds: if Player i has
a winning strategy w.r.t.W in this arena, then Player i has also a chromatic q-state win-
ning strategy w.r.t. W in this arena. Again, if no such q exists, we set mmχ

i (W) = +∞.
Clearly, we have mmi(W) ≤ mmχ

i (W) for every winning condition W .
It is classical [5] that all ω-regular winning conditions W ⊆ Cω have constant

chromatic memory complexity: mmχ
0 (W) < +∞,mmχ

1 (W) < +∞. Kopczyński gave
an exponential-time algorithm which computes mmχ

i (W) for an ω-regular W , pro-
vided that W is given as a deterministic parity automaton. He then conjectured that
mmχ

i (W) = mmi(W) for every winning condition W . His motivation was as follows: if
this equality holds, then we automatically have an exponential-time algorithm to com-
pute mmi(W) for an ω-regular W .

As we mentioned, in 2020 Bouyer et al. [3] obtained a complete characterization
of winning conditions with constant chromatic memory complexity for both players,
that is, of winning conditions satisfying mmχ

0 (W) < +∞,mmχ
1 (W) < +∞. Broadly

speaking, they gave a graph-theoretic sufficient and necessary condition for determinacy
with constant chromatic memory complexity. In other words, they reduced a game-
theoretic reasoning in this case to a reasoning about graphs.

This result motivates the following modification of the Kopczyński’s conjecture. Is
it true for every winning condition W that mmi(W) < +∞ ⇐⇒ mmχ

i (W) < +∞? In
other words, is it true that a winning condition with constant general memory complexity
also has constant chromatic memory complexity? If that were true, we would have
had a complete characterization of winning conditions with constant general memory
complexity, due to results of Bouyer et al.

Recently, Casares [6] disproved the original conjecture of Kopczyński. More specif-
ically, for every n he constructed a winning condition Wn ⊆ {1, 2, . . . , n}ω such that
mmχ

0 (Wn) = n and mm0(Wn) = 2. This winning condition is arranged as follows. We

6

put α ∈ {1, 2, . . . , n}ω intoWn if and only if there are exactly two elements of {1, 2, . . . , n}
that occur infinitely often in α. Let us note that Wn is ω-regular.

One can notice that this result of Casares also gives an example of a winning condi-
tionW with constant general memory complexity, but super-constant chromatic memory
complexity. Thus, it answers negatively to our modification of the Kopczyński’s conjec-
ture. However, this W is over an infinite set of colors. Namely, set C = N. Let W ⊆ Nω

be the set of all α ∈ Nω such that there are exactly 2 elements of N occurring infinitely
often in α. On one hand, W is at least as hard (in terms of memory requirements)
as Wn, for every n, so we have mmχ

0 (W) = +∞. On the other hand, since any finite
arena involves only finitely many colors, and since mm0(Wn) = 2 for every n, we have
mm0(W) = 2.

It is open if there exists a winning condition W over a finite set of colors with
mm0(W) < +∞ and mmχ

0 (W) = +∞. Let us note here that such a separation can be
easily obtained for one-player games (that is, for games over arenas where one of the
players controls all the nodes), via the example from subsection 1.2. Namely, let the set
of colors be {0, 1}, and assume that the goal of Player 0 is to maximize the maximum
number of consecutive 1’s in a sequence of colors. It is not hard to see that Player 0
can play optimally with just 2 states of memory in every one-player arena. An idea is
that we first have to reach the starting point of the longest all-ones path p, and then
we have to go through p. We may assume that p is simple because otherwise there is
a simple all-ones cycle which allows us to win trivially. There is a slight problem that
the path to the starting node of p and the path p itself may have common nodes, and
we have to do different things at these nodes at different moments. So we just have to
remember whether we have already been to the starting node of p or not. However, this
kind of memory is essentially non-chromatic. In fact, by considering arenas as on Figure
1, one can show that there is no constant q such that Player 0 can play optimally with
q states of chromatic memory in all one-player arenas. Unfortunately, this example has
super-constant general memory complexity in two-player arenas, so it does not provide a
separation between the chromatic and the general memory complexity in the two-player
regime.

The question of the relationship between the chromatic and the general memory
is not settled in infinite arenas. In contrast to finite arenas, it is unclear for infinite
arenas whether determinacy in general finite-memory strategies implies determinacy in
chromatic finite-memory strategies. Note that our upper bounds are inapplicable as
they involve the number of nodes. It was recently shown by Bouyer, Randour and
Vandenhove [2] that the class of winning condition that are chromatic finite-memory
determined in infinite arenas coincides with the class ω-regular conditions.

Finally, it would be interesting to extend our upper bounds on chromatic memory to
stochastic games. Seemingly, our proofs do not work in the stochastic setting, so we re-
quire new ideas here. It is worth to mention in this context a paper [1], studying winning
conditions that have constant chromatic memory complexity in stochastic games.

The rest of the paper is organized as follows. In the next section we give preliminaries.
In Section 3 we give the exact statements of our results, equipped with brief overviews

7

of the proofs. Complete proofs of our results are given in the subsequent sections.

2 Preliminaries
Notation. For a set A, we let A∗ (resp., Aω) stand for the set of all finite (resp., infinite)
sequences of elements of A. For x ∈ A∗, we let |x| denote the length of x (we also set
|x| = +∞ for x ∈ Aω). We write A = B t C for three sets A,B,C when A = B ∪ C
and B ∩ C = ∅. We let ◦ denote the function composition. The set of positive integral
numbers is denoted by Z+.

2.1 Arenas
Definition 1. Let C be any set. A tuple A = 〈V, V0, V1, E〉, where V, V0, V1, E are four
finite sets such that V = V0 t V1 and E ⊆ V × C × V , is called an arena over the set
of colors C if for every s ∈ V there exist c ∈ C and t ∈ V such that (s, c, t) ∈ E.

Elements of V will be called nodes of A. Elements of V0 (resp., V1) will be called
nodes of Player 0 (resp., Player 1). Elements of E will be called edges of A. For an
edge e = (s, c, t) ∈ E we define source(e) = s, col(e) = c and target(e) = t. We imagine
e ∈ E as an arrow which is drawn from the node source(e) to the node target(e) and
which is colored by col(e). The out-degree of a node s ∈ V is the number of e ∈ E with
s = source(e). By definition of an arena, the out-degree of every node must be positive.

We extend the function col to a function col : E∗ ∪ Eω → C∗ ∪ Cω by setting:

col(e1e2e3 . . .) = col(e1)col(e2)col(e3) . . . , e1, e2, e3, . . . ∈ E.

A non-empty sequence p = e1e2e3 . . . ∈ E∗ ∪Eω is called a path if for any 1 ≤ i < |p|
we have target(ei) = source(ei+1). We set source(p) = source(e1) and, if p is finite,
target(p) = target(e|p|). For technical convenience, with every node v ∈ V we associate a
0-length path λv, for which we set source(λv) = target(λv) = v.

2.2 Strategies
Let A = 〈V, V0, V1, E〉 be an arena over the set of colors C. A strategy of Player 0 in A
is any function

S : {p | p is a finite path in A with target(p) ∈ V0} → E,

such that for every p from the domain of S we have source(S(p)) = target(p).
Intuitively, finite paths in A represent possible developments of the game in A. When

the game starts in a node s ∈ V , the starting position2 is represented by the 0-length
path λs. Player 0 is the one to move after a finite path p if and only if t = target(p)

2We stress that in our setting, the starting node is not fixed. The same strategy S can be applied
for different starting nodes.

8

is a node of Player 0. In this situation, Player 0 must choose some edge from t. We
then append this edge to p. A strategy of Player 0 fixes the choices of Player 0 in all
situations when this player is the one to move.

In this paper, we only mention strategies of Player 0, but, of course, strategies of
Player 1 can be defined similarly.

Let us define, what does it mean that a path is consistent with a strategy S of Player
0. First, any 0-length path λv is consistent with S. Now, a non-empty path p = e1e2e3 . . .
(which may be finite or infinite) is consistent with S if the following holds:

• if source(p) ∈ V0, then e1 = S(λsource(p));

• for any 1 ≤ i < |p|, if target(ei) ∈ V0, then ei+1 = S(e1e2 . . . ei).

For any node v ∈ V and for any strategy S of Player 0, we let col(S, v) ⊆ Cω be the
set of all col(p) over all infinite paths p such that source(p) = v and p is consistent with S.
Less formally, col(S, v) is the set of all infinite sequences of colors that can be obtained
in a play with S from the node v. For U ⊆ V , we define col(S, U) = ⋃

v∈U col(S, v).

2.3 Winning conditions and preference relations
A winning condition is any set W ⊆ Cω. We say that a strategy S of Player 0 is winning
from u ∈ V w.r.t. toW if col(S, u) ⊆ W . In other words, any infinite play from u against
S must give a sequence of colors belonging to W .

We also consider a more general class of objectives called preference relations. A
preference relation is a total preorder v on the set Cω. Intuitively, when given a pref-
erence relation v, the goal of Player 0 is to maximize the sequence of colors in the play
w.r.t. v.

Any two strategies S1, S2 of Player 0 can be compared w.r.t. v (from the perspective
of Player 0). Namely, we say that S1 is better than S2 from u ∈ V if there exists
β ∈ col(S2, u) such that α 6v β for every α ∈ col(S1, u). This means that there exists
a play against S2 which is strictly worse from the viewpoint of Player 0 than any play
against S1. Correspondingly, we say that S2 is at least as good as S1 from u ∈ V if it is
not true that S1 is better than S2 from u, that is, if for every β ∈ col(S2, u) there exists
α ∈ col(S1, u) such that α v β.

It is straightforward to check that for any u ∈ V , the relation “at least as good from
u” is a total preorder on the set of strategies of Player 0.

2.4 Memory structures
Let A = 〈V, V0, V1, E〉 be an arena over the set of colors C. A memory structure in A is a
tupleM = 〈M,minit, δ〉, whereM is a finite set, minit ∈M and δ : M×E →M . In other
words, a memory structureM is a deterministic finite automaton whose input alphabet
is the set of edges of A. Thus, M serves as the set of states of our memory structure,

9

minit serves as its initial state, and δ as its transition function. Given m ∈ M , we
inductively extend the function δ(m, ·) to arbitrary finite sequences of edges as follows:

δ(m, empty sequence) = m,

δ(m, se) = δ(δ(m, s), e), s ∈ E∗, e ∈ E.

Thus, δ(m, s) for s ∈ E∗ is the state into which our memory structure comes from the
state m after reading the sequence s.

We say that a memory structure M = 〈M,minit, δ〉 is chromatic if there exists a
function σ : M × C → M such that δ(m, e) = σ(m, col(e)) for every e ∈ E and m ∈ M .
In other words, a chromatic memory structure does not distinguish edges of the same
color. Correspondingly, it will be sometimes convenient to view chromatic memory
structures as finite automata over the set C (and not over the set of edges of A).

Let S be a strategy of Player 0 andM = 〈M,minit, δ〉 be a memory structure. We
say that S is anM-strategy if for any two paths p1, p2 with target(p1) = target(p2) ∈ V0
it holds that:

δ(minit, p1) = δ(minit, p2) =⇒ S(p1) = S(p2)
In other words, the value of S(p) for anM-strategy S solely depends on target(p) and on
a state ofM after p (assuming that initiallyM is inminit). Thus, with anyM-strategy S
one can associate the next-move function of S. This is a function nS : V0×M → E defined
as follows: to determine nS(v,m), we take an arbitrary finite path p with target(p) = v
and δ(minit, p) = m, and set nS(v,m) = S(p). If there is no such path p at all, we
define nS(v,m) arbitrarily. Less formally, nS(v,m) is the move of S from the node v
when the state of S is m. Note that the next-move function completely determines the
corresponding strategy. For the sake of brevity, in the paper we will use the same letter
for a strategy and for its next-move function. That is, when S is anM-strategy, we use
the letter S in two different ways. First, S(p) denotes the move of S after a finite path
p. Second, S(v,m) for v ∈ V0,m ∈ M denotes the value of the next-move function of S
on the pair (v,m).

For brevity, if S is anM-strategy, we let the state of S after a finite path p stand for
δ(minit, p), where δ is the transition function ofM.

We say that S is a q-state strategy if S is anM-strategy for some memory structure
M = 〈M,minit, δ〉 with |M | = q. IfM is additionally chromatic, then we say that S is
a chromatic q-state strategy.

3 Exact Statements of the Results and Overviews of
the Proofs

The exact statement of our main upper bound is the following

Theorem 1. For any n, q ∈ Z+, for any arena A = 〈V, V0, V1, E〉 with n nodes, for any
set U ⊆ V , and for any q-state strategy S1 of Player 0 in A, there exists a chromatic
(q + 1)n-state strategy S2 of Player 0 such that col(S2, U) ⊆ col(S1, U).

10

It should not be confusing that this theorem does not mention winning conditions.
One can notice that col(S1, U) is the minimal winning condition w.r.t. which S1 is winning
from all nodes of U . So, if S1 and S2 are as in Theorem 1, and W is a winning condition
w.r.t. which S1 is winning from all nodes of U , then S2 is also winning w.r.t. W from all
nodes of U . That is, we obtain the following corollary.

Corollary 2. Let W ⊆ Cω be any winning condition. Then for any n, q ∈ Z+ the
following holds. Take any n-node arena A and any q-state strategy S1 of Player 0 in A.
Then in A there exists a chromatic (q + 1)n-state strategy S2 of Player 0 such that for
any node v of A the following holds: if S1 is winning from v w.r.t. W , then so is S2.

Proof. Apply Theorem 1 to the set U of nodes from where S1 is winning w.r.t. W .

Let us now give a proof sketch of Theorem 1. Its full proof is given in Section 4

Proof sketch of Theorem 1. At each moment, S2 stores a function f : V → M ∪ {⊥},
where M is the set of states of S1 and ⊥ /∈M is a special symbol meaning “undefined”.
There are (q+ 1)n such functions, so S2 will have (q+ 1)n states. Strategy S2 maintains
the following two invariants called soundness and completeness:

• (soundness) for any v ∈ V where f is defined, there exists a path from U to v such
that, first, this path is colored exactly as our current play with S2, second, this
path is consistent with S1, and third, the state of S1 after this path is f(v);

• (completeness) f is defined in the last node of our current play with S2.

To show that col(S2, U) ⊆ col(S1, U), we have to show that for any infinite play P2
with S2 from U there exists an infinite play P1 with S1 from U such that P1 has the
same sequence of colors as P2. An analog of this statement for finite plays easily follows
from the soundness and the completeness. Indeed, if we have a finite play p2 with S2,
then, by the completeness, f is defined on its endpoint, so we can take a finite play p1
with S1 which establishes the soundness for the endpoint of p2. We then extend this to
infinite plays via the Kőnig’s lemma, by considering all finite prefixes of P2.

It remains to define the memory structure of S2 (which has to be chromatic) and the
next-move function of S2 in such a way that the soundness and the completeness hold.

We start with the next-move function of S2. Assume that S2 has to make a move
from v ∈ V . If f(v) 6= ⊥, then S2 makes the same move as S1 does from v when its
state is f(v). If f(v) = ⊥, then S2 makes an arbitrary move (however, the completeness
invariant ensures that this situation never occurs).

We now define the memory structure of S2. To ensure our invariants in the beginning,
we let the initial state of S2 be the function finit : V →M ∪{⊥}, which maps nodes from
U to minit (the initial state of S1) and other nodes to ⊥. Now, assume that the current
state of S2 is represented by a function f : V → M ∪ {⊥}, and then we receive an edge
whose color is c ∈ C. Our current play against S2 became one edge longer. We have to
define a new state f̂ : V → M ∪ {⊥} of S2 in some way which preserves the soundness

11

and the completeness. Moreover, since S2 has to be chromatic, f̂ has to be a function
of f and the color c.

On a high level, we consider all paths which establish the soundness for f , and then
try all possible ways to extend them by c-colored edges without violating consistency
with S1. Of course, we do not store all these paths in our memory, but the knowledge
of f is sufficient. For example, assume that we have a c-colored edge from a node u of
Player 1 with f(u) 6= ⊥ to a node v. Then we can safely define f̂(v) to be the state
into which the memory structure of S1 transits from the state f(u) after reading the
edge (u, c, v). Now, if u is a node of Player 0, there is one more restriction: the edge
(u, c, v) has to be the move of S1 from u in the state f(u). This is needed to preserve
the consistency with S1.

For the completeness, we have to ensure that there is a c-colored edge allowing us to
define f̂ at the endpoint of our current play with S2. It is not hard to see that one such
edge is simply the last edge of this play. It is not a problem that we might actually use
some other edge to define f̂ at the last node of our current play – we should only ensure
that f̂ is defined there.

To obtain an analog of Corollary 2 for preference relations, we establish the following
result.

Theorem 3. For any n, q ∈ Z+, for any arena A = 〈V, V0, V1, E〉 with n nodes, for any
total preorder � on the set V and for any q-state strategy S1 of Player 0 in A, there
exists a chromatic (qn + 1)n-state strategy S2 of Player 0 such that for any v ∈ V we
have:

col(S2, v) ⊆
⋃

u∈V,v�u
col(S1, u).

Corollary 4. Let v be any preference relation on Cω. Then for any n, q ∈ Z+ the
following holds. Take any n-node arena A and any q-state strategy S1 of Player 0 in A.
Then there exists a chromatic (qn+ 1)n-state strategy S2 of Player 0 such that, for any
node v of A, we have that S2 is at least as good as S1 w.r.t. v from v.

Let us discuss why do we need slightly more states in Corollary 4 than in Corollary 2.
The reason is that we want S2 to be as good as S1 from every node of A. When we were
dealing with winning condition, we could just forget about the nodes where S1 is not
winning. Now there is a finer classification of the nodes, depending on what Player 0 can
achieve in these nodes w.r.t. v, and it is slightly harder to deal with this classification.

Let us now formally derive Corollary 4 from Theorem 3.

Proof of Corollary 4. We write u � v for two nodes u, v of A if for any β ∈ col(S1, v)
there exists α ∈ col(S1, u) such that α v β. Let us verify that � is a total preorder on the
set V of nodes of A. The transitivity of � follows from the transitivity v. The reflexivity
of � is obvious. Now we show the totality of �, that is, we show that u 6� v =⇒ v � u.
Since u 6� v, there exists β ∈ col(S1, v) such that α 6v β for every α ∈ col(S1, u). By the
totality of v, we have β v α for every α ∈ col(S1, u). This implies that v � u.

12

We then apply Theorem 3 to �. Consider the resulting chromatic (qn + 1)n-state
strategy S2. We show, for every v ∈ V , that S2 is at least as good as S1 w.r.t. v from v.
That is, we show, for every β ∈ col(S2, v), that there exists α ∈ col(S1, v) with α v β.
By the conclusion of Theorem 3, we have that β belongs to col(S1, u) for some v � u.
By definition of �, there exists some α ∈ col(S1, v) such that α v β, as required.

Next we provide a proof sketch of Theorem 3, whose full proof is given in Section 5.

Proof sketch of Theorem 3. This time, S2 will store slightly more information than in
the proof of Theorem 1. Namely, at each moment, S2 stores a function of the form
f : V → V ×M ∪ {⊥} (observe that this requires (qn + 1)n states). That is, whenever
f is defined at v, the value f(v) is an ordered pair in which the first coordinate is a
node and the second coordinate is a state of S1. We introduce the first coordinate to
strengthen the soundness condition: a path which establishes the soundness at v must be
from the first coordinate of f(v). More precisely, the soundness condition is formulated
as follows:

• (soundness) for any v ∈ V where f(v) = (u,m) 6= ⊥ is defined, there exists a path
from u to v such that, first, this path is colored exactly as our current play with
S2, second, this path is consistent with S1, and third, the state of S1 after this
path is m;

To take into account the preorder �, we modify the completeness condition as follows:

• (completeness) f is defined at the last node of our current play with S2; moreover,
the first coordinate of f at this node is at least as large w.r.t. � as the starting
node of our play with S2.

These two conditions imply that for any infinite play P2 with S2 there exists an infinite
play P1 with S1 such that, first, col(P2) = col(P1), and second, source(P2) � source(P1)
(again, we first derive this for finite plays, and then extend to infinite plays via the
Kőnig’s lemma). In turn, this obviously implies that

col(S2, v) ⊆
⋃

u∈V,v�u
col(S1, u).

It remains to define S2 satisfying the soundness and the completeness. We give
essentially the same definition as in the proof of Theorem 1. The only difference is that
we have to additionally care about the first coordinates of f . For example, assume that
our current state is f , and then we have to determine the new state f̂ at a node v. If
there is more than one edge of the form (u, c, v) allowing to define f̂ at v, we choose
one maximizing the first coordinate of f(u) w.r.t. � (and we set the first coordinate of
f̂(v) to be equal to this maximum). This ensures that the value of the first coordinate
of f(vcur), where vcur is the last node in our current play with S2, can only increase
over time w.r.t. �. In particular, it is always at least as large as the starting node of
our play, since in the beginning we set finit(v) = (v,minit) for every v ∈ V . This easily

13

establishes our modified completeness condition, while the soundness requires almost no
new argument.

Finally, the exact statement of our lower bound showing the tightness of Theorem 1
is the following:

Theorem 5. For any n, q ∈ Z+ there exists an arena A with n+ 3 nodes, a node u of A
and a q-state strategy S1 of Player 0 in A such that for any chromatic Q-state strategy
S2 of Player 0 it holds that col(S2, u) ⊆ col(S1, u) =⇒ Q ≥ qn.

Our argument has a connection to a work of Jirásková and Pighizzini [8] on self-
verifying automata. It turns out that from one of their results one can directly derive
a weaker version of Theorem 5. Namely, one can get an arena with n + O(1) nodes
and a 2-state strategy S1 of Player 0 in it such that for some node u of this arena the
following holds: if S2 is a chromatic Q-state strategy with col(S2, u) ⊆ col(S1, u), then
Q = Ω(3n/2). We show this derivation below in this section. Of course, when S1 has
2 states, Theorem 5 gives a better bound Q = Ω(2n), let alone that q can be arbitrary
in Theorem 5). In fact, for the strong version of Theorem 5 it is not sufficient to use
results of Jirásková and Pighizzini as a black box – we have to slightly modify their
construction. The full proof of Theorem 5 is given in Section 6.

Sketch of the proof of Theorem 5 (weak version). A self-verifying automaton is a non-
deterministic finite automaton with a property that, for any input word w, exactly one
of the following two statements holds:

• there exists a computation which accepts w;

• there exists a computation which rejects w.

For every n ∈ N, Jirásková and Pighizzini construct a self-verifying automaton An
with n states such that any deterministic automaton, recognizing the same language as
An, has Ω(3n/2) states (they also show that this bound is tight). Using An, we construct
an arena with n + O(1) nodes and a 2-state strategy S1 of Player 0 in it such that for
some node u of this arena the following holds: if S2 is a chromatic Q-state strategy with
col(S2, u) ⊆ col(S1, u), then Q = Ω(3n/2). Namely, consider the transition graph of An;
it can be viewed as an arena with edges colored by the input letters of An. Assume
that Player 1 is the one to move everywhere in this transition graph. Now, add a node
t controlled by Player 0. Draw edges to t from all accepting and rejecting states of An.
Color all these edges into a single color #. Finally, take two colors c and d that do not
belong to the input alphabet of An, and draw two edges from t to the initial state of An,
one colored by c and the other one by d. We define u as a node corresponding to the
initial state of An.

Consider the following strategy S1 of Player 0. If we come to t from an accepting
state, then S1 goes to the initial state by the c-colored edge. Otherwise, S1 uses the

14

d-colored edge. Note that S1 is a 2-state strategy – it just has to remember, whether the
last node in a play was some accepting state of An.

We now show that from any chromatic strategy S2 with col(S2, u) ⊆ col(S1, u) one
can extract a deterministic finite automaton recognizing the language of An (below, we
denote this language by L(An)). This means that any such S2 must have Ω(3n/2) states.

First, notice that, for every word w, Player 1 has a path to t which is colored by w#.
Indeed, for any w there is a computation over w which brings either to an accepting
or to a rejecting state, from where we can go to t by a #-colored edge. Now, since
An is self-verifying, we have the following. For w ∈ L(An), there is no w#-colored
path to t which goes through a rejecting state (otherwise it would give a computation
which rejects w). Similarly, for w /∈ L(An), there is no w#-colored path to t which goes
through an accepting state. This means that if w# is a prefix of some infinite sequence
from col(S1, u), then it is followed by c in this sequence if and only if w ∈ L(An).
Thus, if S2 is chromatic and col(S2, u) ⊆ col(S1, u), then its memory structure, for any
w1 ∈ L(An), w2 /∈ L(An), must come into different states on w1 and on w2. Indeed,
otherwise it makes the same move after w1# and after w2#.

4 Proof of Theorem 1
LetM = 〈M,minit, δ〉 be the memory structure of S1. We have that |M | = q. The set of
states of S2 will be the set of functions f : V → M ∪ {⊥}, where ⊥ /∈ M . Thus, S2 will
be a (q + 1)n-state strategy. The initial state of S2 is the function finit : V →M ∪ {⊥},

finit(v) =

minit v ∈ U,
⊥ otherwise

We will define S2 in such a way that for any finite path p the following holds. Assume
that p is consistent with S2 and source(p) ∈ U . Let f : V →M ∪ {⊥} be the state of S2
after p. Then we have the following two properties called soundness and completeness:

• (soundness) for any v ∈ V , if f(v) = m 6= ⊥, then there exists a finite path p1 with
source(p1) ∈ U, target(p1) = v, such that, first, p1 is consistent with S1, second,
col(p1) = col(p), and third, δ(minit, p1) = m.

• (completeness) f(target(p)) 6= ⊥.

Let us first show that for any S2 with these properties we have col(S2, U) ⊆ col(S1, U).
For that it is sufficient to establish the following. Let P be an arbitrary infinite path
such that P is consistent with S2 and source(P) ∈ U . Then there exists an infinite path
P1 such that P1 is consistent with S1, source(P1) ∈ U and col(P1) = col(P).

Take an arbitrary v ∈ V . Consider an infinite tree of all finite paths from v that are
consistent with S1. Now, delete from this tree all paths that are inconsistent with the

15

coloring of P . That is, we delete a path q if col(q) 6= col(p), where p is a prefix of P with
|p| = |q|. Let the resulting tree be Tv.

It is sufficient to show that for some v ∈ U , there is an infinite branch in Tv. By
Kőnig’s lemma, we have this as long as there exists v ∈ U such that Tv is infinite (since
we consider only finite arenas, Tv has finite branching for every v). To show this, we
show that for any k ∈ Z+ there exists v ∈ U such that Tv has a node of depth k. Indeed,
let p be a prefix of P of length k. Since P is consistent with S2, so is p. Moreover,
source(p) = source(P) ∈ U . Let f : V →M ∪ {⊥} be the state of S2 after reading p. By
the completeness property, we have f(target(p)) = m 6= ⊥. By the soundness property,
there exists a finite path p1 with source(p1) ∈ U such that p1 is consistent with S1 and
col(p1) = col(p). Observe then that p1 is a depth-k node of Tsource(p1).

We now show how to define S2 with properties as above. We first describe the
transition function of the memory structure of S2. This memory structure has to be
chromatic. So when its transition function receives an edge, it will only use the color of
this edge to produce a new state.

Assume the current state of this memory structure is f : V → M ∪ {⊥}, and it
receives an edge whose color is c ∈ C. We determine the new state g : V → M ∪ {⊥}
according to the following algorithm. To determine g(v) for v ∈ V , we introduce a notion
of a (f, v, c)-good edge. An edge e ∈ E is (f, v, c)-good if

target(e) = v, col(e) = c and f(source(e)) 6= ⊥; (1)
if source(e) ∈ V0, then e = S1

(
source(e), f(source(e))

)
. (2)

If no (f, v, c)-good edge exists, we set g(v) = ⊥. Otherwise, we take an arbitrary (f, v, c)-
good edge e and set g(v) = δ

(
f(source(e)), e

)
.

We now describe the next-move function of S2. Consider an arbitrary state f : V →
M ∪ {⊥} of S2 and an arbitrary node v ∈ V0. Define S2(v, f) as follows. Assume first
that f(v) 6= ⊥. Then set S2(v, f) = S1

(
v, f(v)

)
. If f(v) = ⊥, define S2(v, f) arbitrarily.

Definition of S2 is finished. It remains to verify that it satisfies the soundness and
the completeness properties. We show this by induction on the length of p.

We start with the induction base. Assume that p is a 0-length path (then it is
automatically consistent with any strategy) and that source(p) ∈ U . We have to check
the soundness and the completeness properties for p and for the initial state finit. Let us
start with the soundness. If finit(v) 6= ⊥, then, by definition, v ∈ U and finit(v) = minit.
Therefore, we can set p1 = λv. As for the completeness, we have finit(source(p)) 6= ⊥
because source(p) ∈ U .

We now perform the induction step. Assume that we have verified the soundness and
the completeness properties for all paths of length k. We extend this to paths of length
k + 1. Consider any path p = p′e′ of length k + 1. Here e′ ∈ E is the last edge of p so
that p′ is of length k. Assume that p is consistent with S2 and source(p) ∈ U . Then p′ is
also consistent with S2 and source(p′) = source(p) ∈ U . Let f be the state of S2 after p′.
By the induction hypothesis, we have that the soundness and the completeness hold for

16

p′ and f . Now, let g : V → M ∪ {⊥} be the state of S2 after p. Alternatively, g is the
state into which the memory structure of S2 transits from the state f when it receives
e′. Let c = col(e′) be the color of e′.

We first show that p and g satisfy the soundness property (see Figure 2).

v

w

w

v

w

w

e′ e

p′ p′1

U

p p1

Figure 2: The argument for the soundness.

Consider any v ∈ V such that g(v) 6= ⊥. There must be an (f, v, c)-good edge. Let
e be an (f, v, c)-good edge which was used to determine g(v). Denote w = source(e).
By (1), we have f(w) 6= ⊥. Hence, by the soundness for p′ and f , there exists a finite
path p′1 with source(p′1) ∈ U, target(p′1) = w, such that (a) p′1 is consistent with S1; (b)
col(p′1) = col(p′); (c) δ(minit, p

′
1) = f(w). Set p1 = p′1e. Since target(p′1) = w = source(e),

we have that p1 is a path. We show that p1 verifies the soundness property for g(v).
Obviously, source(p1) = source(p′1) ∈ U . Since e is (f, v, c)-good, we have by (1) that
target(e) = v. Hence, target(p1) = target(e) = v. Let us now check that p1 is consistent
with S1. This is obvious if w = target(p′1) ∈ V1, because p′1 is consistent with S1. Now,
if w = target(p′1) ∈ V0, we have to show that e = S1(p′1). Since f(w) = δ(minit, p

′
1) is

the state of S1 after p′1, we have S1(p′1) = S1(w, f(w)). In turn, since e is (f, v, c)-good,
by (2) we have S1(w, f(w)) = S1

(
source(e), f(source(e))

)
= e. It remains to show that

col(p1) = col(p) and δ(minit, p1) = g(v). Indeed, col(p1) = col(p′1e) = col(p′1)col(e) =
col(p′)c = col(p′)col(e′) = col(p′e′) = col(p). Here we use a fact that col(e) = c due to
(1). In turn, δ(minit, p1) = δ(minit, p

′
1e) = δ(δ(minit, p

′
1), e) = δ(f(w), e). It remains to

recall that by definition, g(v) = δ(f(source(e)), e) = δ(f(w), e).
Now we show that p and g satisfy the completeness property. In other words,

we show that g(target(p)) 6= ⊥. By definition, this holds as long as there exists an
(f, target(p), c)-good edge. We claim that e′, the last edge of p, is (f, target(p), c)-

17

good. Let us first verify that e′ satisfies (1). Obviously, target(e′) = target(p).
Now, col(e′) = c by definition. Finally, we have f(source(e′)) = f(target(p′)) 6= ⊥
due to the completeness property for p′ and f . Let us now check that e′ satis-
fies (2). Assume that source(e′) = target(p′) ∈ V0. Since p is consistent with S2,
we have e′ = S2(p′). Now, by definition, f is the state of S2 after p′. Therefore,
e′ = S2(p′) = S2(target(p′), f) = S2(source(e′), f). Again, since the completeness prop-
erty holds for p′ and f , we have f(source(e′)) = f(target(p′)) 6= ⊥. Hence, by definition
of S2, we have that e′ = S2(source(e′), f) = S1

(
source(e′), f(source(e′))

)
. Thus, (2) is

established for e′.

5 Proof of Theorem 3
LetM = 〈M,minit, δ〉 be the memory structure of S1. We have that |M | = q. The set of
states of S2 will be the set of functions f : V → V ×M∪{⊥}, where ⊥ /∈ V ×M . Thus, S2
is a (qn+1)n-state strategy. The initial state of S2 is the function finit : V → V ×M∪{⊥},
defined by f(v) = (v,minit) for every v ∈ V .

We use the following notation in the proof. Take any f : V → V ×M ∪ {⊥} and
v ∈ V , and assume that f(v) = (u,m) 6= ⊥. Then we set f1(v) = u and f2(v) = m.
That is, f1 is the projection of f to the first coordinate (its values are nodes of our arena)
and f2 is the projection of f to the second coordinate (its values are states of S1). If
f(v) = ⊥, we set f1(v) = f2(v) = ⊥.

Our goal is to define S2 in a such a way that, for any finite path p which is consistent
with S2, and for the state f of S2 after p, the following holds:

• (soundness) for any v ∈ V , if f(v) 6= ⊥, then there exists a finite path p1 from
f1(v) to v such that, first, p1 is consistent with S1, second, col(p1) = col(p), and
third, δ(minit, p1) = f2(v).

• (completeness) f(target(p)) 6= ⊥ and source(p) � f2(v).

It is not hard to see that for any S2 with these properties we have

col(S2, v) ⊆
⋃

u∈V,v�u
col(S1, u).

Indeed, to establish this, we have to show that for any infinite path P which is consistent
with S2 there exists an infinite path P1 which is consistent with S1 such that col(P) =
col(P1) and source(P) � source(P1). For this we define the trees Tv, v ∈ V as in the proof
of Theorem 1. By Kőnig’s lemma, it is sufficient to show that Tu is infinite for some u
with source(P) � u. We take an arbitrary finite prefix p of P . Since p is consistent with
S2, from the completeness we get that f(target(p)) 6= ⊥. By applying the soundness to
the node target(p), we get a finite path p1 from f1(target(p)) to target(p) such that, first,
p1 is consistent with S1, and second, col(p1) = col(p). Hence, p1 is a node of Tf1(target(p)).
Moreover, by the completeness we have source(P) = source(p) � f1(target(p)). Thus, for

18

some u with source(P) � u there is a node of depth |p| in Tu. It remains to note that
|p| can be arbitrarily large.

We now explain how to define S2 in a way which guaranties the soundness and the
completeness properties. We start with the transition function of S2. Assume that the
current state of S2 is f : V → V ×M ∪ {⊥}, and then it receives an edge whose color is
c. We define the new state g : V → V ×M ∪ {⊥} as follows (we stress that S2 has to
be chromatic, so g will be a function of f and c). Take any v ∈ V for which we want to
determine g(v). Note that f2 : V →M∪{⊥}. If there is no (f2, v, c)-good edge, in a sense
of (1–2), then we set g(v) = ⊥. Otherwise, we take an (f2, v, c)-good edge e, maximizing
f1(source(e)) w.r.t. �, and set g1(v) = f1(source(e)), g2(v) = δ(f2(source(e)), e).

We now define the next-move function of S2. Let f : V → V ×M ∪ {⊥} be a state
and v ∈ V0 be a node of Player 0. If f(v) 6= ⊥, we set S2(v, f) = S1(v, f2(v)). Otherwise,
we define S2(v, f) arbitrarily.

It remains to establish the soundness and the completeness properties for all finite
paths p that are consistent with S2. As before, we do so by induction on |p|.

We start with the induction base. Assume that |p| = 0. The initial state of S2 is the
function finit. Recall that we have finit(v) = (v,minit) for every v ∈ V . So, to establish
the soundness, we can set p1 = λv for every v ∈ V . For the completeness, observe
that finit(target(p)) = (target(p),minit) 6= ⊥ and, obviously, source(p) � target(p) (just
because p is a 0-length path so that source(p) = target(p)).

Let us now perform the induction step. Assume that our claim is proved for all p of
length up to k. Take any p = p′e′ of length k + 1 which is consistent with S2. Here e′ is
the last edge of p. Then p′ is consistent with S2 and has length k. Hence, we have the
induction hypothesis for p′ and for a function f : V → V ×M ∪ {⊥} which is the state
of S2 after p′. Next, let the state of S2 after p be g : V → V ×M ∪ {⊥}. Note that g is
the value of the transition function of S2 on f and c = col(e′) ∈ C.

To check the soundness for p and g, one can use exactly the same argument as in
Theorem 1 for f2 and g2. That is, for any v ∈ V with g(v) 6= ⊥, we consider an
(f2, v, c)-good edge e which was used to define g(v). By (1), we have f2(source(e)) 6=
⊥ =⇒ f(source(e)) 6= ⊥. Then, using the induction hypothesis for p′, we take a path p′1
establishing the soundness for f and p′ at source(e). Finally, we define p1 = p′1e and show
that p1 establishes the soundness for g and p at v. Obviously, p1 is a path to v. By the
same routine check as in the proof of Theorem 1, we have that, first, p1 is consistent with
S1, second, col(p1) = col(p), and third, δ(minit, p1) = g2(v). The only thing we have to
additionally check is that p1 starts in g1(v). Indeed, by definition, g1(v) = f1(source(e)).
Note that p′1 is a prefix of p1, so these paths have the same starting node. In turn, since
p′1 establishes the soundness for f and p′ at source(e), the starting node of p′1 must be
f1(source(e)) = g1(v), as required.

We now check the completeness property for p and g. It is sufficient to show the
existence of an (f2, target(p), c)-good edge e with source(p) � f1(source(e)). Indeed,
g(target(p)) 6= ⊥ if and only if (f2, target(p), c)-good edges exist, and g1(target(p)) is the
maximum of f1(source(e)) w.r.t. � over such edges.

19

We claim that e′, the last edge of p, satisfies these conditions. To show this, recall
that by the induction hypothesis we have the completeness for p′ and f . Let us first
demonstrate that e′ satisfies (1) for f2, v = target(p) and c. Indeed, target(e′) = target(p)
because e′ is the last edge of p, col(e′) = c by definition of c, and f2(source(e′)) =
f2(target(p′)) 6= ⊥ by the completeness for p′ and f . Let us now verify (2). Assume
that source(e′) ∈ V0. Then, since p = p′e′ is consistent with S2, we have e′ = S2(p′).
The state of S2 after p′ is f , so S2(p′) = S2(target(p′), f) = S2(source(e′), f). Note
that f(source(e′)) = f(target(p′)) 6= ⊥ by the completeness for p′ and f . Hence, by
definition of S2, we have S2(source(e′), f) = S1(source(e′), f2(source(e′)), and, thus, e′
satisfies (2). Finally, we have to show that source(p) � f1(source(e)). This is because,
by the completeness for p′ and f , we have source(p′) � f1(target(p′)). It remains to note
that source(p) = source(p′) and source(e′) = target(p′) – recall that e′ is the last edge of
p and p′ is the part of p which precedes e′.

6 Proof of Theorem 5
Let A be as on Figure 3.

vn . . . v2 v1 v0

u

t
x x x x

z z
z

z

y y y y

x

c

d

z

Figure 3: Arena A. The set of colors is C = {x, y, z, c, d}. The partition of the nodes
between the players is given by V0 = {t}, V1 = {u, v0, v1, . . . , vn}.

We define S1 as follows. Its memory structure maintains a number count ∈
{0, 1, . . . , q − 1}. Initially, count = 0. When the memory structure of S1 passes through
any y-colored edge, it increments count by 1 modulo q. In turn, when we go from v0
to vn, it sets count = 0. In all the other cases, the value of count does not change. It
remains to define how S1 acts at t (this is the only node from where Player 0 is the one

20

to move). There are two edges from t, both go to v0, but one is c-colored and the other
is d-colored. If count = 0, then S1 uses the c-colored edge. If count 6= 0, then S1 uses
the d-colored edge.

For brevity, if p is a finite path in A, then by count(p) we denote the value of count
after p.

We need the following definition and the following lemma about paths in the arena
A.

Definition 2. Define a function f : {x, y}∗ → {0, 1, . . . , q − 1} as follows. Take any
w ∈ {x, y}∗. To define f(w), first define a word w′ ∈ {x, y}∗. Namely, if w has at most
n occurrences of x, then set w′ = w. Otherwise, take the (n+ 1)st occurrence of x from
the right, erase it and everything to its left, and let the remaining word be w′. Finally,
let f(w) be the number of y’s in w′ modulo q.

Lemma 6. For any w ∈ {x, y}∗ the following holds:

(a) there exists a finite path p with source(p) = u, target(p) = t and col(p) = zwz;

(b) for any finite path p, if source(p) = u and col(p) = zwz, then target(p) = t and
count(p) = f(w).

Proof. Let X be the number of occurrences of x in w. Set i to be the remainder of X
when divided by n+ 1.

We start by showing (a). To construct p, we first go from u to vi. Then we start
reading letters of w one by one from left to right. Every time we read a new letter, we
move from our current location via some edge colored by this letter. It remains to show
that after reading the whole w we end up in v0, which has an out-going z-colored edge
to t. Indeed, if we forget about y’s, then we are just rotating counterclockwise along the
cycle vn → . . .→ v1 → v0 → vn. The length of this cycle is n+ 1, and the distance from
vi to v0, measured counterclockwise, is i. Thus, since in w there are X ≡ i (mod n+ 1)
occurrences of x, we end up in v0.

We now show (b). Consider any finite path p with source(p) = u and col(p) = zwz.
Observe that once we left u, it is impossible to come back to it again. Therefore, since
the last edge of p is z-colored, this edge must be from v0 to t. Hence, target(p) = t.

It remains to show that count(p) = f(w). Assume first that p never goes from v0 to
vn. Then count(p) is the number of y’s modulo q in w, because col(p) = zwz. Thus, to
show that count(p) = f(w) in this case, it is enough to show X ≤ n. Indeed, the first
edge of p is from u to vj, for some j ∈ {0, 1, . . . , n}. Then it makes X steps along the
cycle vn → . . . → v1 → v0 → vn. If X were at least n + 1, then p had to go from v0 to
vn at least once, contradiction.

Now, assume that p contains edges from v0 to vn. By definition, count(p) equals the
number of y-colored edges in p modulo q after the last time p went from v0 to vn. To show
that count(p) = f(w), we have to show that the number of x-colored edges in p after the
last time p went from v0 to vn is n (then the last edge from v0 to vn in p corresponds to
the (n + 1)st occurrence of x in w from the right). Indeed, as we discussed above, the

21

last edge of p must be from v0 to t. Obviously, if we go from vn to v0 without going to
vn again after this, then the number of times we pass an x-colored edge is exactly n.

This gives the following fact about the set col(S1, u).

Corollary 7. For any w ∈ {x, y}∗ the following holds. If zwzc is a prefix of some
sequence from col(S1, u), then f(w) = 0. In turn, if zwzd is a prefix of some sequence
from col(S1, u), then f(w) 6= 0.

Proof. Fix h ∈ {c, d}. Take any w ∈ {x, y}∗ such that zwzh is a prefix of some sequence
of col(S1, u). We show that h = c ⇐⇒ f(w) = 0.

By definition of col(S1, u), there exists a finite path p with source(p) = u, col(p) =
zwzh which is consistent with S1. Let p1 be the part of p which precedes its last edge.
Since source(p1) = u and col(p1) = zwz, we have by the item (b) of Lemma 6 that
target(p1) = t and count(p1) = f(w).

The node t is controlled by Player 0. Hence, since p is consistent with S1, the last
edge of p must be equal to S1(p1). The color of S1(p1) is h. In turn, count(p1) is the
state of S1 after p1. Therefore, by definition of S1, the color of S1(p1) is c if and only if
count(p1) = f(w) = 0. The lemma is proved.

Consider now any chromatic Q-state strategy S2 such that col(S2, u) ⊆ col(S1, u).
Let M = 〈M,minit, σ : M × {x, y, z, c, d} → M〉 be its (chromatic) memory structure.
To show that Q ≥ qn, in Lemma 8 we provide qn words from {x, y, z, c, d}∗ such that
σ(minit, ·) must take different values on these words.

Definition 3. Let g : {0, 1, . . . , q − 1}n → {x, y}∗ be the following function:

g : (i1, i2, . . . , in) 7→ xyi1xyi2 . . . xyin .

Lemma 8. For any κ1, κ2 ∈ {0, 1, . . . , q − 1}n such that κ1 6= κ2 we have
σ(minit, zg(κ1)) 6= σ(minit, zg(κ2)).

To establish Lemma 8, we first need the following lemma.

Lemma 9. For any κ1, κ2 ∈ {0, 1, . . . , q − 1}n such that κ1 6= κ2 there exists a word
w ∈ {x, y}∗ such that f(g(κ1)w) = 0 and f(g(κ2)w) 6= 0.

Proof. Assume that κ1 = (i1, i2, . . . , in) and κ2 = (j1, . . . , jn). Take the largest k ∈
{1, 2, . . . , n} such that ik 6= jk. Let r ∈ {0, 1, . . . , q−1} be such that ik+ik+1+. . .+in+r ≡
0 (mod q). Define w = xkyr. Thus,

g(κ1)w = xyi1xyi2 . . . xyik . . . xyinxkyr,

g(κ2)w = xyj1xyj2 . . . xyjk . . . xyjnxkyr.

22

Observe that the (n + 1)st occurrence of x in g(κ1)w is one before yik . Similarly, the
(n+ 1)st occurrence of x in g(κ2)w is one before yjk . Hence, by definition of f , we have:

f(g(κ1)w) ≡ ik + ik+1 + . . .+ in + r (mod q),
f(g(κ2)w) ≡ jk + jk+1 + . . .+ jn + r (mod q).

By definition of r, we have f(g(κ1)w) = 0. In turn, by definition of k, we have ik 6= jk
and ik+1 = jk+1, . . . , in = jn. The numbers ik, jk are different elements of {0, 1, . . . , q−1},
which means that their difference is not divisible by q. Hence, f(g(κ2)w) 6= f(g(κ1)w) =
0.

To conclude the proof of the theorem, it remains to derive Lemma 8 from Lemma 9.
Assume for contradiction that

σ(minit, zg(κ1)) = σ(minit, zg(κ2)) (3)

for some κ1, κ2 ∈ {0, 1, . . . , q − 1}n, κ1 6= κ2. By Lemma 9 there exists w ∈ {x, y}∗ such
that

f(g(κ1)w) = 0, f(g(κ2)w) 6= 0. (4)
By the item (a) of Lemma 6 there exist two finite paths p1 and p2 such that

source(p1) = source(p2) = u,

target(p1) = target(p2) = t,

col(p1) = zg(κ1)wz, col(p2) = zg(κ2)wz.

The paths p1 and p2 do not have c, d-colored edges. That is, they do not have edges
that start at t. This means that these paths are consistent with S2. We claim that
S2(p1) = S2(p2). Indeed, since S2 is chromatic, the value of S2(p) for a finite path p with
target(p) = t is completely determined by σ(minit, col(p)). Now, by (3) we have that:

σ(minit, col(p1)) = σ(minit, zg(κ1)wz) = σ(minit, zg(κ2)wz) = σ(minit, col(p2)).

So let e = S2(p1) = S2(p2). The paths p1e and p2e are both consistent with S2. Since
col(S2, u) ⊆ col(S1, u), we have that col(p1e) is a prefix of some sequence from col(S1, u),
and so is col(p2e). This gives a contradiction with Corollary 7. Indeed, assume first that
col(e) = c. Then col(p2e) = zg(κ2)wzc is a prefix of some sequence from col(S1, u), but
f(g(κ2)w) 6= 0 by (4), contradiction. Similarly, if col(e) = d, then col(p1e) = zg(κ1)wzd
is a prefix of some sequence from col(S1, u), but f(g(κ1)w) = 0 by (4), contradiction.

References
[1] Bouyer, P., Oualhadj, Y., Randour, M., and Vandenhove, P. Arena-

Independent Finite-Memory Determinacy in Stochastic Games. In 32nd Interna-
tional Conference on Concurrency Theory (CONCUR 2021) (Dagstuhl, Germany,
2021), S. Haddad and D. Varacca, Eds., vol. 203 of Leibniz International Proceed-
ings in Informatics (LIPIcs), Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
pp. 26:1–26:18.

23

[2] Bouyer, P., Randour, M., and Vandenhove, P. Characterizing omega-
regularity through finite-memory determinacy of games on infinite graphs. arXiv
preprint arXiv:2110.01276 (2021).

[3] Bouyer, P., Roux, S. L., Oualhadj, Y., Randour, M., and Vandenhove,
P. Games Where You Can Play Optimally with Arena-Independent Finite Mem-
ory. In 31st International Conference on Concurrency Theory (CONCUR 2020)
(Dagstuhl, Germany, 2020), I. Konnov and L. Kovács, Eds., vol. 171 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), Schloss Dagstuhl–Leibniz-Zentrum
für Informatik, pp. 24:1–24:22.

[4] Bouyer, P., Roux, S. L., and Thomasset, N. Finite-memory strategies in
two-player infinite games. arXiv preprint arXiv:2107.09945 (2021).

[5] Büchi, J. R., and Landweber, L. H. Solving sequential conditions by finite-
state strategies. Transactions of the American Mathematical Society 138 (1969),
295–311.

[6] Casares, A. On the minimisation of transition-based rabin automata and the chro-
matic memory requirements of muller conditions. arXiv preprint arXiv:2105.12009
(2021).

[7] Gimbert, H., and Zielonka, W. Games where you can play optimally without
any memory. In International Conference on Concurrency Theory (2005), Springer,
pp. 428–442.

[8] Jirásková, G., and Pighizzini, G. Optimal simulation of self-verifying au-
tomata by deterministic automata. Information and Computation 209, 3 (2011),
528–535.

[9] Kopczyński, E. Half-positional determinacy of infite games. PhD thesis, Warsaw
University, 2008.

[10] Le Roux, S. Time-aware uniformization of winning strategies. In Conference on
Computability in Europe (2020), Springer, pp. 193–204.

[11] Le Roux, S., Pauly, A., and Randour, M. Extending finite-memory de-
terminacy by boolean combination of winning conditions. In 38th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence (2018).

[12] Muchnik, A. A. Games on infinite trees and automata with dead-ends: a
new proof for the decidability of the monadic second order theory of two suc-
cessors. BULLETIN-EUROPEAN ASSOCIATION FOR THEORETICAL COM-
PUTER SCIENCE 48 (1992), 219–219.

[13] Thomas, W., and Wilke, T. Automata, logics, and infinite games: A guide to
current research. Bulletin of Symbolic Logic 10, 1 (2004).

24

	Introduction
	Chromatic strategies
	Example
	Our contribution
	Other related works and open problems

	Preliminaries
	Arenas
	Strategies
	Winning conditions and preference relations
	Memory structures

	Exact Statements of the Results and Overviews of the Proofs
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Theorem 5

