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The problem



The flock-of-birds problems

I A flock of n birds. Are there at least t birds?

I Each with a sensor. A sensor has capacity of Q states.

I from time to time, two birds come close;

I their sensors update their states according to a transition
function δ : Q × Q → Q × Q.

I (Population protocol) You program δ! And a partition of the
set of states into 0-states and 1-states such that...

I In any “realistic” infinite sequence of encounters
I if n < t, eventually all sensors are forever in 0-states;
I if n ≥ t, eventually all sensors are forever in 1-states.

It should for work for any n with fixed Q! What is the minimal Q
for a given threshold t?



Example of a population protocol

Before defining “realistic” sequences...

I Initially, all sensors are in 0-states and have 1 coin.

I When two sensors meet, one of them gets all the coins of the
other one...

I unless they have ≥ t coins in total.

I In this case, they transit into a unique 1-state.

I sensors in the 1-state convert other sensors.

I t + 1 states: 0, 1, . . . , t − 1 coins (0-states) and the 1-state.

I Q = t + 1.

If n < t, all sensors will always be in 0-states.

If n ≥ t . . .



Realistic sequences

Definition
An infinite sequence of encounters α ∈ ({1, 2, . . . , n}2)ω is
realistic if all words from ({1, 2, . . . , n}2)∗ has infinitely many
occurrences in α.

Definition
A population protocol solves the flock-of-birds problem with
threshold t if for every n:

I if n ≥ t, then for all realistic infinite sequences of encounters
of n birds eventually all sensors are always in 1-states;

I if n < t, then for all realistic infinite sequences of encounters
of n birds eventually all sensors are always in 0-states.

Definition
A population protocol which solves the flock-of-birds problem with
threshold t is one-sided if for every n < t, no sensor can ever
come into a 1-state.



The problem

Q(t) is the minimal Q such that
there exists a population protocol
with Q states solving the
flock-of-birds problem with
threshold t.

Q1(t) is the minimal Q such that
there exists a one-sided
population protocol with Q
states solving the flock-of-birds
problem with threshold t.



Context and Results



Population protocols

I Distributed computing, networks of mobile sensors, chemical
reaction;

I LOGIC;

I Generally, population protocols are meant for computing
predicates over natural numbers (not only unary).

I the flock of birds – threshold predicates R(n) = I{n ≥ t}.
I Theorem [Angluin et al., 2007]: a predicate can be computed

by a population protocol ⇐⇒ this predicate is definable in
Presburger arithmetic.

I idea: addition is easy.

I one-sided population protocols exactly compute threshold
predicates and the all-0 predicate.



What next?

Minimizing:

the number of
states

time of
convergences

for a given predicate (and other kinds of problems like leader
election).
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Minimization of the number of states

Theorem (Blondin et al., 2020)

Any predicate definable by a quantifier-free Presburger formula of
bit-length l (assuming constants are written in binary) can be
computed by a population protocol with poly(l) states.

R(n) = I{n ≥ t} has bit-length log2 t
=⇒ Q(t) ≤ polylog(t).



Results for the flock-of-birds

I Q(t) = Ω

(√
log(t)

log log(t)

)
for infinitely many t by the counting

argument.

I Q(t) ≥ Ω(log log log(t)) for all t [Czerner and Esparza, 2021]

I Q(t) ≤ Q1(t) ≤ 4 log2(t) for all t [Blondin, Esparza, Jaax,
2018]

I Q1(t) ≥ log3(t) for all t [Blondin, Esparza, Jaax, 2018]

I Q(t) = O(log log t) for infinitely many t [Cherner, 2022]

Theorem (Our results)

For all t we have

log2 t ≤ Q1(t) ≤ log2 t + min{e, z}

where e is the number of 1’s in the binary expansion of t, and z is
the number of 0’s in the binary expansion of t − 1.

Corollary: log2 t ≤ Q1(t) ≤ 3
2 log2 t.



Overviews of the Proofs



More convenient definition

Definition
An infinite sequence of encounters α ∈ ({1, 2, . . . , n}2)ω is
realistic if all words from ({1, 2, . . . , n}2)∗ has infinitely many
occurrences in α.

Definition
A population protocol solves the flock-of-birds problem with
threshold t if for every n:

I if n ≥ t, then for all realistic infinite sequences of encounters
of n birds eventually all sensors are always in 1-states;

I if n < t, then for all realistic infinite sequences of encounters
of n birds eventually all sensors are always in 0-states.



Configuration graphs

A population protocol Π. A configuration is a vector in NQ (how
many sensors are in each state).

C1 → C2 if some encounter brings C1 to C2. Configuration graph
Gn(Π).

Theorem
A population protocol Π solves the flock-of-birds problem with
threshold t ⇐⇒ for every n, for every “trap” in Gn(Π) the
following holds. If n ≥ t, then all configurations in this trap have
only 1-states. And if n < t, then all configuration in this trap have
only 0-states.

A trap – a reachable strongly connected component which is
impossible to leave.



Lemma which implies the equivalence result

Lemma
For any realistic sequence of encounters, the set of configurations
that occur infinitely often in it is a trap.

Theorem
A population protocol Π solves the flock-of-birds problem with
threshold t ⇐⇒ for every n, for every “trap” in Gn(Π) the
following holds. If n ≥ t, then all configurations in this trap have
only 1-states. And if n < t, then all configuration in this trap have
only 0-states.



Proof of the Lemma

Lemma
For any realistic sequence of encounters, the set of configurations
that occur infinitely often in it is a trap.

All these configurations are reachable from one another. Only have
to show that no other configuration is reachable.

The point: if you can leave a pairwise connected set of
configurations S , then there exists a single finite sequence of
encounters that leaves S from any configuration of S .



Example of an argument

I Initially, all sensors are in 0-states and have 1 coin.

I When two sensors meet, one of them gets all the coins of the
other one...

I unless they have ≥ t coins in total.

I In this case, they transit into a unique 1-state.

I sensors in the 1-state convert other sensors.

I t + 1 states: 0, 1, . . . , t − 1 coins (0-states) and the 1-state.

I Q = t + 1.

If n < t, all sensors will always be in 0-states.

If n ≥ t . . . Consider any trap. You can bring all into the 1-state.
But you are still in the trap. So you can reach all configurations of
the trap again. So there are only 1-states.



Upper bound

Theorem (Our results)

For all t we have

Q1(t) ≤ log2 t + min{e, z}

where e is the number of 1’s in the binary expansion of t, and z is
the number of 0’s in the binary expansion of t − 1.

t = 2d

e = 1

z = 0

Q1 = d + O(1)

t = 2d − 1

e = d − 1

z = 1

Q1 = d + O(1)



Case t = 2d

I the same protocol as before, but sensors can only hold powers
of two of coins;

I If n < 2d , the argument is the same.

I If n ≥ 2d , consider any trap.

I We should be able to bring some sensor into the 1-state.
Then the argument is the same.

I Consider a configuration minimizing the number of
non-bankrupt sensors.

I There has to be two equal powers of 2. Otherwise
1 + 2 + . . .+ 2d−1 < 2d .

I If it is 2d−1, 2d−1, we can bring them into the 1-state.

I Otherwise, we could decrease the number of non-bankrupt
sensors.



Case t = 2d − 1

I the same protocol with powers of two;

I when two sensors with 2d−2 coins meet, one gets 2d−1 and
the other one gets 1 coin out of nowhere

I If two sensors with 2d−1 coins meet, they both come into the
1-state.

I the case n < t = 2d − 1;

I when a coin out of nowhere appears for the first time, we get
one sensor with 2d−1 coins.

I n − 2d−1 + 1 < 2d − 1− 2d−1 + 1 = 2d−1 coins in other
sensors.

I can never have two sensors with 2d−2 coins again.



Case t = 2d − 1

I case n ≥ t.

I consider any trap. We have to bring somebody into the
1-state.

I maximize the total number of coins.

I then minimize the total number of non-bankrupt sensors.

I W.l.o.g. no two sensors with the same powers of 2.

I Maximally 1 + 2 + . . .+ 2d−1 = t coins.

I If we do not have 2d−1 coins, then we have less than t. If we
have, then a coin out of nowhere was created at least one, so
in the beginning we had less than t.



Lower bound

Theorem (Our results)

For all t we have
Q1(t) ≥ log2 t.

I Let S be the set of states of a one-sided population protocol
Π, solving the FOB problem with threshold t.

I For s ∈ S , let f (s) be the minimal n such that s can occur
from the initial configuration of n birds.

I |S | ≥ |f (S)|.
I 1 ∈ f (S) (because of the initial state);
I t ∈ f (S) (because of some 1-state);
I f (S) cannot have large gaps.

Lemma
If a < b are two consecutive elements of f (S), then b ≤ 2a

Modulo Lemma, we must have about log2(t) elements of f (S)
between 1 and t.





Thank you!


