
Polyhedral value iteration for discounted games and
energy games

Alexander Kozachinskiy∗

Department of Computer Science, University of Warwick, Coventry, UK

October 27, 2020

Abstract

We present a deterministic algorithm, solving discounted games with n nodes
in nO(1) · (2 +

√
2)n-time. For bipartite discounted games our algorithm runs in

nO(1) · 2n-time. Prior to our work no deterministic algorithm running in time
2o(n logn) regardless of the discount factor was known.

We call our approach polyhedral value iteration. We rely on a well-known fact
that the values of a discounted game can be found from the so-called optimality
equations. In the algorithm we consider a polyhedron obtained by relaxing opti-
mality equations. We iterate points on the border of this polyhedron by moving
each time along a carefully chosen shift as far as possible. This continues until the
current point satisfies optimality equations.

Our approach is heavily inspired by a recent algorithm of Dorfman et
al. (ICALP 2019) for energy games. For completeness, we present their algo-
rithm in terms of polyhedral value iteration. Our exposition, unlike the original
algorithm, does not require edge weights to be integers and works for arbitrary
real weights.

1 Introduction
We study discounted games, mean payoff games and energy games. All these
three kinds of games are played on finite weighted directed graphs between two players
called Max and Min. In case of the discounted games, description of a game graph
also includes a real number λ ∈ (0, 1) called the discount factor. Players shift a pebble
along the edges of a graph. Nodes of the graph are partitioned into two subsets, one
where Max controls the pebble and the other where Min controls the pebble. One should

∗Alexander.Kozachinskiy@warwick.ac.uk. Supported by the EPSRC grant EP/P020992/1 (Solving
Parity Games in Theory and Practice).

1

also indicate in advance a starting node (a node where the pebble is located initially).
By making infinitely many moves the players give rise to an infinite sequence of edges
e1, e2, e3, . . . of the graph (here ei is the ith edge passed by the pebble). The outcome
of the game is a real number determined by a sequence w1, w2, w3, . . ., where wi is the
weight of the edge ei. We assume that outcome serves as the amount of fine paid by
player Min to player Max. In other words, the goal of Max is to maximize the outcome
and the goal of Min is to minimize it.

The outcome is computed differently in discounted, mean payoff and energy games.

• the outcome of a discounted game is
∞∑
i=1

λi−1wi,

where λ is the discount factor of our game graph.

• the outcome of a mean payoff game is

lim sup
n→∞

w1 + . . .+ wn
n

.

• the outcome of an energy game is1 the sequence (w1 + w2 + . . .+ wn), n ∈ N is bounded from below,
0 otherwise,

(we interpret outcome 1 as victory of Max and outcome 0 as victory of Min).

All these three games are determined. This means that in every game graph, for every
node v of the graph there exists a real number α (called the value of v) such that

• (a) there is a Max’s strategy σ, guarantying that the outcome is at least α if the
game starts in v;

• (b) there is a Min’s strategy τ , guarantying that the outcome is at most α if the
game starts in v.

Any such pair of strategies (σ, τ) is called optimal for v.
Moreover [27, 7, 5], these games are positionally determined. This means that for

every game graph there is a pair of positional strategies (σ, τ) which is optimal for every
node of the graph. A strategy is positional if for every node v it always makes the same
move when the pebble is in v.

We study algorithmic problems that arise from these games. Namely, the value
problem is a problem of finding values of the nodes of a given game graph. The decision
problem is a problem of comparing the value of a node with a given threshold. Another
fundamental problem, called strategy synthesis, is to find optimal positional strategies.

2

Motivation. Positionally determined games are of great interest in the design of
algorithms and computational complexity. Specifically, these games serve as a source of
problems that are in NP∩coNP but not known to be in P.

Below we survey algorithms for discounted, mean payoff and energy games (including
our contribution). Mean payoff and discounted games are also studied in context of
dynamic systems [9]. Positionally determined games in general have a broad impact on
formal languages and automata theory [2].

Value problem vs. decision problem. The value problem, as more general one, is
at least as hard as the decision problem. On the other hand, the values in the discounted
and mean payoff games can be obtained from a play of two positional strategies. Hence,
the bit-length of values is polynomial in the bit-length of the edge weights and (in case
of discounted games) the discount factor. This makes the value problem polynomial-
time reducible to the decision problem via binary search. For energy games there is no
difference between these two problems at all.

On the other hand, for discounted and mean payoff games the value problem may
turn out to be harder for strongly polynomial algorithms. Indeed, a reduction from the
value problem to the decision problem via the binary search does not work when the
weights are arbitrarily real numbers.

Reductions, structural complexity. It is known that Max wins in an energy
game if and only if the value of the corresponding mean payoff game is non-negative [3].
Hence, energy games are equivalent to the decision problem for mean-payoff games with
threshold 0. Any other threshold α is reducible to threshold 0 by adding −α to all the
weights. So energy games and mean payoff games are polynomial-time equivalent.

Decision problem for discounted games lies in UP∩coUP [16]. In turn, mean pay-
off games are polynomial-time reducible to discounted games [28]. Hence, the same
UP∩coUP upper bound applies to mean payoff and energy games. None of these prob-
lems is known to lie in P.

Algorithms for discounted games. There are two classical approaches to dis-
counted games. In value iteration approach, going back to Shapley [27], one manipulates
with a real vector indexed by the nodes. The vector of values of a discounted game is
known to be a fixed point of an explicit contracting operator. By applying this operator
repeatedly to an arbitrary initial vector, one obtains a sequence converging to the vector
of values. Using this, Littman [18] gave a deterministic O

(
nO(1)·L

1−λ log
(

1
1−λ

))
-time algo-

rithm solving the value problem for discounted games. Here n is the number of nodes,
λ is the discount factor and L is the bit-length of input. This gives a polynomial time
algorithm for λ = 1− Ω(1).

Strategy iteration approach, going back to Howard [15] (see also [26]), can be seen as
a sophisticated way of iterating positional strategies of players. Hansen et al. [14] showed
that strategy iteration solves the value problem for discounted games in deterministic
O
(
nO(1)

1−λ log2

(
1

1−λ

))
-time. Unlike Littman’s algorithm, for λ = 1 − Ω(1) this algorithm

is strongly polynomial.

3

More recently, interior point methods we applied to discounted games [13]. As of
now, however, these methods do not outperform the algorithm of Hansen et al.

In all these algorithms the running time depends on λ (exponentially in the bit-
length of λ). As far as we know, no deterministic algorithm with running time 2o(n logn)

regardless of the value of λ was known. One can get 2O(n logn)-time by simply trying all
possible positional strategies of one of the players. Our main result pushes this bound
down to 2O(n). More precisely, we show the following

Theorem 1. There is a deterministic algorithm, finding the values in a discounted game
on a graph with n nodes in nO(1) · (2 +

√
2)n-time and nO(1)-space. The algorithm can be

performed even when the discount factor and the edge weights are arbitrary real numbers
(assuming basic arithmetic operations with them are carried out by an oracle)1.

Remark 1. One of the anonymous reviewers of this paper noticed that the complexity
analysis in Theorem 1 can be improved to nO(1)(1/ρ)n, where ρ is a unique root of the
equation ρ2 + 2ρ/(1 − ρ) = 1 in the interval (0, 1). Numerically, 1/ρ ≈ 3.214, while
2 +
√

2 ≈ 3.414. We describe this suggestion after our proof of Theorem 1.

We also obtain a better bound for a special case of discounted games, namely for
bipartite discounted games. We call a discounted game bipartite if in the underlying
graph each edge is either an edge from a Max’s node to a Min’s node or an edge from a
Min’s node to a Max’s node. In other words, in a bipartite discounted game players can
only make moves alternatively.

Theorem 2. There is a deterministic algorithm, finding the values in a bipartite dis-
counted game on a graph with n nodes in nO(1) · 2n-time and nO(1)-space. The algorithm
can be performed even when the discount factor and the edge weights are arbitrary real
numbers (assuming basic arithmetic operations with them are carried out by an oracle).

Our algorithm is the fastest known deterministic algorithm for discounted games
when λ > 1− (2 +

√
2 + Ω(1))−n. For bipartite discounted games it is the fastest one for

λ > 1− (2 + Ω(1))−n. For smaller discounts, the algorithm of Hansen et al. outperforms
the bound we obtain for our algorithm. One should also mention that their algorithm is
applicable to more general stochastic discounted games, while our algorithm is not.

In addition, it is known that randomized algorithms can solve discounted games
faster, namely, in time 2O(

√
n·logn) [19, 12, 1]. These algorithms are based on formulating

discounted games as an LP-type problem [20].

Algorithms for mean payoff and energy games. In the literature on the mean
payoff and energy games it is often assumed that the edge weights are integers. In this
case, for a given game graph we denote by W the largest absolute value of an edge
weight.

1If the running time were polynomial, we could simply say that this algorithm is “strongly polyno-
mial”. Unfortunately, it seems that there is no such well-established terminology for superpolynomial-
time algorithms.

4

Zwick and Paterson [28] gave an algorithm solving the value problem for mean payoff
games in pseudopolynomial time, namely, in time O(nO(1) ·W) (see also [23]). Brim et
al. [4] improved the polynomial factor before W . In turn, Fijalkow et al. [8] slightly
improved the dependence on W (from W to W 1−1/n).

There are algorithms with running time depending onW much better (at the cost that
they are exponential in n). Lifshits and Pavlov [17] gave a O(nO(1) ·2n)-time algorithm for
energy games (here the running time does not depend at all on W). Recently, Dorfman
et al. [6] pushed 2n down to 2n/2 by giving a O(nO(1) · 2n/2 logW)-time algorithm for
energy games. They also announced that the logW factor can be removed. At the cost
of an extra logW factor these algorithms can be lifted to the value problem for mean
payoff games.

All these algorithms are deterministic. As for randomized algorithms, the state-of-
the-art is 2O(

√
n logn)-time, the same as for discounted games.

We show that:

Theorem 3. There is a deterministic algorithm, finding in nO(1)2n/2-time and nO(1)-
space all the nodes that are winning for Max in a given energy game with n nodes.
The algorithm can be performed even when the edge weights are arbitrary real numbers
(assuming basic arithmetic operations with them are carried out by an oracle)

This certifies that indeed, as stated without a proof in [6], the logW -factor before
2n/2 can be removed. Moreover, this certifies that for the 2n/2 bound we do not need an
assumption that the edge weights are integral.

Remark 2. An updated online version of [6] contains an algorithm that works for real
weights as well. In addition, this algorithm also computes the minimal energy levels
for all nodes where Max wins (i.e., minimal c such that Max can guaranty that c+w1 +
w2+. . .+wn > 0 for all n). Still, by giving a proof of Theorem 3 along with our algorithm
for discounted games, we hope to present these two results in the same framework.

1.1 Our technique
Arguably, our approach arises more naturally for discounted games, yet it roots in the
algorithm of Dorfman et al. for energy games.

For discounted games we iterate a real vector x with coordinates indexed by the
nodes of the graph, until x coincides with the vector of values. Thus, our approach can
also be called value iteration. However, it differs significantly from the classical value
iteration, and we call it polyhedral value iteration.

We rely on a well-known fact that the vector of values is a unique solution to the
so-called optimality equations. Optimality equations can be seen as a set of conditions
of the following form. First, they include a system of linear inequalities over x. Namely,
this system contains for each edge an inequality between the values of its endpoints. In
addition, optimality equations state that every node has an out-going edge for which the
corresponding inequality turns into an equality.

5

By forgetting about this additional condition we obtain a polyhedron containing the
vector of values. We call this polyhedron optimality polyhedron. Of course, besides the
vector of values there are some other points too.

We initialize x by finding any point belonging to the optimality polyhedron. There is
little chance that x will satisfy optimality equations. So until it does, we do the following.
We compute a feasible shift, i.e., a shift that does not immediately lead us outside the
optimality polyhedron. Then we move from x along this shift as far as possible, until
the border of the optimality polyhedron is reached. This point on the border will be the
new value of x.

We choose a shift in a very specific way. First, a feasible shift from x should not violate
tight edges (edges for which the corresponding inequality in the optimality polyhedron
turns into an equality on x). To produce such a shift, we consider an auxiliary discrete
game which we call discounted normal play game (DNP game for short), played only on
the tight edges. Essentially, the DNP game for x will be just our initial discounted game,
but with zero edge weights and only with edges that are tight on x. It will be easy to see
that the vector of values of a DNP game always forms a feasible shift. One might find
this approach resembling the Primal-Dual approach from Combinatorial Optimization
(see, e.g. [22]).

It turns out that this process converges to the vector of values. Moreover, it does
in O(n(2 +

√
2)n) steps. This bound follows from a certain combinatorial fact about

directed graphs. This fact can be stated and proved independently of our algorithm. In
more detail, we define a notion of a DNP games iteration. A DNP games iteration is
a sequence of DNP games on directed graphs, where each next DNP game is obtained
from the previous one according to certain rules. Once again, we do not assume that
DNP games in a DNP games iteration are necessarily played on graphs of tight edges
from our algorithm – they can be played on arbitrary graphs.

After we give a formal definition of a DNP games iteration, we split the complexity
analysis into two independent parts. First, we show that the sequence of DNP games
arising from our algorithm always forms a DNP games iteration. Second, we show
that the length of any DNP games iteration is O(n(2 +

√
2)n). In the second (and the

most challenging) part of the argument we do not mention at all our algorithm and our
initial discounted game. We find this feature of our argument very important. First, it
significantly simplifies the exposition. Second, it indicates that this sort of an argument
might be relatively easy adapted to other games. We demonstrate this with the example
of the algorithm of Dorfman et al. for energy games, and we hope that it might lead to
some new applications.

Dorfman et al. build upon a potential lifting algorithm of Brim et al. [4]. They notice
that in the algorithm of Brim et al. a lot of consecutive iterations may turn out to be
lifting the same set of nodes. Instead, Dorfman et al. perform all these iterations at
once, accelerating the algorithm of Brim et al.

In our exposition, instead of potential lifting, we perform a polyhedral value iteration,
but now for energy games. In this language, a series of repetitive actions in the algorithm
of Brim et al. corresponds to just one feasible shift in the polyhedral value iteration.

6

The underlying polyhedron will be called the polyhedron of potentials. Loosely speak-
ing, it will be a limit of optimality polyhedra as λ → 1. This resembles a well-known
representation of mean payoff games as a limit of discounted games, see, e.g., [25].

As we mentioned, the complexity analysis is also carried out by DNP games iteration.
In fact, almost no new argument is needed. The same bound as for discounted games
follows at no cost at all. To obtain an improvement to 2n/2, we just notice that in
case of energy games case the underlying DNP games iteration satisfies some additional
restrictions.

2 Preliminaries

2.1 Discounted games
To specify a discounted game G one has to specify: a finite directed graph G = (V,E),
in which every node has at least one out-going edge; a partition of the set of nodes V
into two disjoint subsets VMax and VMin; a weight function w : E → R; a real number
λ ∈ (0, 1) called the discount factor of G.

The following equations in x ∈ RV are called optimality equations for G:

xa = max
e=(a,b)∈E

w(e) + λxb, a ∈ VMax, (1)

xa = min
e=(a,b)∈E

w(e) + λxb, a ∈ VMin, (2)

For any discounted game G there exists a unique solution x∗ to (1–2) [27]. Such x∗ is
called the vector of values of G (see the Introduction for the game-theoretic interpretation
of x∗). In Theorems 1 and 2 we study an algorithmic problem of finding a solution to
(1–2) for a given discounted game G. We refer to this problem as to “finding the values
of a discounted game”.

2.2 Energy games
To specify an energy game G, we need exactly the same information as for a dis-
counted game, except that in energy games there is no discount factor. So below
G = (V,E), VMax, VMin and w are exactly as in the previous subsection.

Let us give a formalization of what does it mean that “a node v ∈ V is winning for
Max in the energy game G”. Again, we refer the reader to the Introduction for a less
formal discussion of this notion.

We use the following terminology for cycles in G. By the weight of a cycle we mean
the sum of the values of w over its edges. We call a cycle positive if its weight is positive.
In the same way we define negative cycles, zero cycles, and so on.

A Max’s positional strategy is a mapping σ : VMax → E such that for every a ∈ VMax
the edge σ(a) starts in the node a. Similarly, a Min’s positional strategy is a mapping
τ : VMin → E such that for every b ∈ VMin the edge τ(b) starts in the node b.

7

For a Max’s positional strategy σ, we say that an edge e = (a, b) ∈ E is consistent
with σ if either a ∈ VMin or a ∈ VMax, e = σ(a). We denote by Eσ the set of edges that
are consistent with a Max’s positional strategy σ. We define consistency with a Min’s
positional strategy τ similarly. We denote by Eτ the set of all edges that are consistent
with a Min’s positional strategy τ .

For a Max’s positional strategy σ and a Min’s positional strategy τ , by Gσ, Gτ and
Gσ
τ we denote the following three graphs: Gσ = (V,Eσ), Gτ = (V,Eτ), Gσ

τ = (V,Eσ∩Eτ).
We say that a node v ∈ V is winning for Max in the energy game G if there exists

a Max’s positional strategy σ such that only non-negative cycles are reachable from v
in the graph Gσ. We say that a node u ∈ V is winning for Min in the energy game G
is there exists a Min’s positional strategy τ such that only negative cycles are reachable
from u in the graph Gτ . It is not hard to see that no node can be simultaneously winning
for Max and winning for Min. Indeed, otherwise a unique simple cycle, reachable from
this node in the graph Gσ

τ , would be simultaneously non-negative and negative. In fact,
every node is either winning for Max or is winning for Min (this easily follows from
the positional determinacy of the mean payoff games, see [3, 5, 7]). In Theorem 3, we
consider an algorithmic problem of find the set of nodes that are winning for Max in a
given energy game G (the rest of the nodes should be then winning for Min).

Remark 3. We call a discounted or an energy game G bipartite if E ⊆ VMax × VMin ∪
VMin × VMax. In this case we also use a term “bipartite” for the underlying graph of the
game.

3 nO(1) ·(2+
√

2)n-time algorithm for discounted games
In this section we give an algorithm establishing Theorem 1 and 2. We consider a
discounted game G, given by a graph G = (V,E), a partition V = VMax t VMin, a weight
function w : E → R, and a discount factor λ. We assume that G has n nodes and m
edges.

In Subsection 3.1 we define auxiliary games that we call discounted normal play
games. We use these games both in the formulation of the algorithm and in the com-
plexity analysis. In Subsection 3.2 we define the so-called optimality polyhedron by
relaxing optimality equations (1–2).

The algorithm is given in Subsection 3.3. In the algorithm we iterate the points of the
optimality polyhedron in search of the solution to (1–2). First, we initialize by finding
any point belonging to the optimality polyhedron. Then for a current point we define
a shift which does not immediately lead us outside the optimality polyhedron. In the
definition of the shift we use discounted normal play games. To obtain the next point
we move as for as possible along the shift until we reach the border. We do so until the
current point satisfies (1–2). Along the way we also take some measures to prevent the
bit-length of the current point from growing super-polynomially.

This process always terminates and, in fact, can take only O(n(2 +
√

2)n) iterations.
Moreover, for bipartite discounted games it can take only O(2n) steps. A proof of it is

8

deferred to Section 4.

3.1 Discounted normal play games.
These games will always be played on directed graphs with the same set of nodes as G.
Given such a graph G′ = (V,E ′), we equip it with the same partition of V into VMax and
VMin as in G. There may be sinks in G′, i.e., nodes with no out-going edges.

Two players called Max and Min move a pebble along the edges of G′. Player Max
controls the pebble in the nodes from VMax and player Min controls the pebble in the
nodes from VMin. If the pebble reaches a sink of G′ after s moves, then the player who
cannot make a move pays a fine of size λs to his opponent. Here λ is the discount factor
of a discounted game which we want to solve. If the pebble never reaches a sink, i.e., if
the play lasts infinitely long, then players pay each other nothing.

By the outcome of the play we mean the income of player Max. Thus, the outcome
is

• positive, if the play ends in a sink from VMin;

• zero, if the play lasts infinitely long;

• negative, if the play ends in a sink from VMax.

It is not hard to see that in this game players have optimal positional strategies. More-
over, if δ(v) is the value of this game in the node v, then

δ(s) = −1, if s is a sink from VMax, (3)
δ(s) = 1, if s is a sink from VMin, (4)
δ(a) = λ · max

(a,b)∈E′
δ(b), if a ∈ VMax and a is not a sink, (5)

δ(a) = λ · min
(a,b)∈E′

δ(b), if a ∈ VMin and a is not a sink. (6)

We omit proofs of these facts as below we only require the following

Proposition 4. For any G = (V,E ′) there exists exactly one solution to (3–6), which
can be found in strongly polynomial time.

Before proving Proposition 4 let us note that for graphs with n nodes any solution
δ to (4–5) satisfies δ(v) ∈ {1, λ, . . . , λn−1, 0,−λn−1, . . . ,−1}. Indeed, if a is not a sink,
then by (5–6) the node a has an out-going edge leading to a node with δ(b) = δ(a)/λ.
By following these edges we either reach a sink after at most n − 1 steps (and then
δ(a) = ±λi for some i ∈ {0, 1, . . . , n−1}) or we go to a loop. For all the nodes on a loop
of length l > 1 we have δ(b) = λlδ(b), which means that δ(b) = 0 everywhere on the loop
(recall that λ ∈ (0, 1)). Thus, if we reach such a loop from a, we also have δ(a) = 0.

From this it is also clear that δ(v) = 1 if and only if v ∈ VMin and v is a sink of G′.
Similarly, δ(v) = −1 if and only if v ∈ VMax and v is a sink of G′.

9

Proof of Proposition 4. To show the existence of a solution and its uniqueness we employ
Banach fixed point theorem. Let ∆ be the set of all vectors f ∈ RV , satisfying

f(s) = 1 for all sinks s ∈ VMin, f(t) = −1 for all sinks t ∈ VMax.

Define the following mapping ρ : ∆→ ∆:

ρ(f)(a) =

−1 a is a sink from VMax,

1 a is a sink from VMin,

λ · max
(a,b)∈E′

f(b) a ∈ VMax and a is not a sink,

λ · min
(a,b)∈E′

f(b) a ∈ VMin and a is not a sink.

The set of solutions to (3–6) coincides with the set of δ ∈ ∆ such that ρ(δ) = δ. It
remains to notice that ρ is λ-contracting with respect to ‖ · ‖∞-norm.

Now let us explain how to find the solution to (3–6) in strongly polynomial time. In
fact, the algorithm will be independent of the value of λ. Let us first determine for every
k ∈ {0, 1, . . . , n− 1} the set Vk = {v ∈ V | δ(v) = λk}. It is clear that V0 coincides with
the set of sinks of the graph G′ that lie in VMin. Next, the set Vk can be determined in
strongly polynomial time provided V0, V1, . . . , Vk−1 are given. Indeed, by (5–6) the set
Vk consists of

• all v ∈ VMax \ V<k that have an out-going edge leading to V<k;

• all v ∈ VMin \ V<k such that all edges starting at v lead to V<k.

Here V<k = V0 ∪ V1 ∪ . . . ∪ Vk−1. In this way we determine all the sets V0, V1, . . . , Vn−1.
Similarly, one can determine all the nodes with δ(v) < 0, and also the exact value of δ
in these nodes. All the remaining nodes satisfy δ(v) = 0.

3.2 Optimality polyhedron
By the optimality polyhedron of the discounted game G we mean the set of all x ∈ RV ,
satisfying the following inequalities:

xa > w(e) + λxb for (a, b) ∈ E, a ∈ VMax, (7)
xa 6 w(e) + λxb for (a, b) ∈ E, a ∈ VMin. (8)

We denote the optimality polyhedron by OptPol. Note that the solution to the opti-
mality equations (1–2) belongs to OptPol.

We call a vector δ ∈ RV a feasible shift for x ∈ OptPol if for all small enough ε > 0
the vector x+ εδ belongs to OptPol. To determine whether a shift δ is feasible for x it
is enough to look at the edges that are tight for x. Namely, we call an edge (a, b) ∈ E

10

tight for x ∈ OptPol if xa = w(e) + λxb, i.e., if the corresponding inequality in (7–8)
becomes an equality on x. It is clear that δ ∈ RV is feasible for x if and only if

δ(a) > λδ(b) whenever (a, b) ∈ E, a ∈ VMax and (a, b) is tight for x, (9)
δ(a) 6 λδ(b) whenever (a, b) ∈ E, a ∈ VMin and (a, b) is tight for x. (10)

Discounted normal play games can be used to produce for any x ∈ OptPol a feasible
shift for x. Namely, let Ex ⊆ E be the set of edges that are tight for x and consider the
graph Gx = (V,Ex). I.e., Gx is a subgraph of G containing only edges that are tight for
x. An important observation is that x is the solution to optimality equations (1–2) if
and only if in Gx there are no sinks.

Define δx to be the solution to (3–6) for Gx. It is easy to verify that the conditions
(5–6) for δx imply (9–10), so δx is a feasible shift for x. Not also that as long as x does
not satisfy (1–2), i.e., as long as the graph Gx has sinks, the vector δx is not zero.

Let us also define a procedure RealizeGraph(S) that we use in our algorithm to
control the bit-length of the current point. In the definition of RealizeGraph(S) we rely
on the following result from [21]. There exists a strongly polynomial-time algorithm A
that, given a system of linear inequalities with two variables per inequality, outputs a
feasible solution to the system if the system is feasible, and outputs “not found” if the
system is infeasible. We take any such A and use it in the definition of RealizeGraph(S).
Namely, the input to the procedure RealizeGraph(S) is a subset S ⊆ E. The output
of RealizeGraph(S) is the output of A on a system that can be obtained from (7–8) by
turning inequalities corresponding to edges from S into equalities.

By definition, if the output of RealizeGraph(S) is not “not found”, then its output
is a point x ∈ OptPol satisfying S ⊆ Ex. If the output of RealizeGraph(S) is “not
found”, then there is no such point. Another important feature of RealizeGraph(S) is
that the bit-length of its output is always polynomially bounded. Indeed, its output
coincides with an output of a strongly polynomial-time algorithm A on a polynomially
bounded input.

3.3 The algorithm

Algorithm 1: nO(1) · (2 +
√

2)n-time algorithm for discounted games
Result: The solution to optimality equations (1–2)
initialization: x = RealizeGraph(∅);
while x does not satisfy (1–2) do

Compute δx using Proposition 4;
εmax ← the largest ε ∈ (0,+∞) s.t x+ εδx ∈ OptPol;
x← RealizeGraph(Ex+εmaxδx);

end
output x;
Some remarks:

11

• the value of εmax can be found as in the simplex-method. Indeed, εmax is the
smallest ε ∈ (0,+∞) for which there exists an inequality in (7–8) which is tight
for x+ εδx but not for x. Thus, to find εmax it is enough to solve at most m linear
one-variable equations and compute the minimum over positive solutions to these
equations.

• in fact, εmax < +∞ throughout the algorithm, i.e, we cannot move along δx forever.
To show this, it is enough to indicate ε > 0 and an inequality in (7–8) which is
tight for x + εδx but not for x. First, since x does not yet satisfy the optimality
equations (1–2), there exists a sink s of the graph Gx. Assume that s ∈ VMax,
the argument in the case s ∈ VMin is similar. In the graph G every node has an
out-going edge, so there exists an edge e = (s, b) ∈ E. The edge (s, b) is not tight
for x (otherwise s is not a sink of Gx). Hence xs > w(e)+λxb. The same inequality
for x+ εδx looks as follows:

xs + εδx(s) > w(e) + λxb + ελδx(b)

Since the node s is a sink of Gx from VMax, we have δx(s) = −1 < λδx(b). Therefore,
the left-hand side of the last inequality decreases in ε faster than the right-hand
side. So for some positive ε the left-hand and the right-hand side will become
equal. This will be εfor which the edge (s, b) is tight for x+ εδx.

• The procedure RealizeGraph can never output “not found” in the algorithm. In-
deed, we always run it on a set of the form S = Ey for some y ∈ OptPol. Of
course, for such S there exists a point x ∈ OptPol such that S ⊆ Ex – for example,
the point y itself.
In addition, note that x is always an output of the procedure RealizeGraph, so,
as we discussed above, its bit-length is polynomially bounded throughout the al-
gorithm.

4 Discounted games: complexity analysis
Let x0, x1, x2, . . . be a sequence of points from OptPol that arise in the Algorithm 1.
The argument consists of two parts:

• first, we show that the sequence of graph Gx0 , Gx1 , Gx2 . . . can be obtained in an
abstract process that we call discounted normal play games iteration (DNP games
iteration for short), see Subsection 4.2;

• second, we show that any sequence of n-node graphs that can be obtained in a
DNP games iteration has length O(n(2 +

√
2)n), see Subsection 4.3.

This will establish Theorem 1. In Subsection 4.4 we explain a suggestion of one of the
reviewers of this paper, improving a bound on the length of a DNP games iteration to
nO(1) · 3.214n.

12

As for Theorem 2, note that if G is bipartite, then so are Gx0 , Gx1 , Gx2 , and so on.
Thus, it is enough to demonstrate that:

• any sequence of bipartite n-node graphs that can be obtained in a DNP games
iteration has length O(2n), see Subsection 4.5.

First of all, we have to give a definition of a DNP games iteration (Subsection 4.1).

4.1 Definition of a DNP games iteration
Consider a directed graph H = (V = VMax t VMin, EH) and let δH be the solution to
(3–6) for H. We say that the edge (a, b) ∈ EH is optimal for H if δH(a) = λδH(b). Next,
we say that a pair (a, b) ∈ V ×V is violating for H if one of the following two conditions
holds:

• a ∈ VMax and δH(a) < λδH(b);

• a ∈ VMin and δH(a) > λδH(b).

Note that a violating pair of nodes cannot be an edge of H because of (5–6).
Consider another directed graph K = (V = VMax t VMin, EK) over the same set of

nodes as H, and with the same partition V = VMaxtVMin. We say thatK can be obtained
from H in one step of DNP games iteration if the following two conditions hold:

• any optimal edge of H is in EK ;

• there is a pair of nodes in EK which is violating for H.

I.e., to obtain K we can first erase some (not necessarily all) non-optimal edges of H,
and then we can add some edges that are not in H, in particular, we must add at least
one violating pair.

Finally, we say that a sequence of graph H0, H1, . . . , Hj can be obtained in a DNP
games iterations if for all i ∈ {0, 1, . . . , j − 1} the graph Hi+1 can be obtained from Hi

in one step of DNP games iteration.

4.2 Why the sequence Gx0, Gx1, Gx2, . . . can be obtained in DNP
games iteration

Let x and x′ = RealizeGraph(Ex+εmaxδx) be two consecutive points of OptPol in the
algorithm. We have to show that the graph Gx′ can be obtained from Gx in one step
of DNP games iteration. By definition of the procedure RealizeGraph the graph Gx′

contains all edges of the graph Gy, where y = x + εmaxδx. Hence it is enough to show
the following:

(a) all the edges of the graph Gx that are optimal for Gx are also in the graph Gy;

(b) there is an edge of the graph Gy which is a violating pair for the graph Gx.

13

Proof of (a). Take any edge (a, b) of the graph Gx which is optimal for Gx. The
corresponding inequality in (7–8) turns into an equality on x. Now, consider the same
inequality for the point y = x+ εmaxδx. Its left-hand side will be bigger by εmax · δx(a),
and its right-hand side will be bigger by εmax ·λδx(b). Since (a, b) is optimal for Gx, these
two quantities are equal. So the left-hand and the right-hand side will still be equal on
y. Hence (a, b) belongs to Gy.

Proof of (b). In fact, any edge of the graph Gy which is not in the graph Gx is
a violating pair for Gx. Indeed, assume that (a, b) ∈ E is an edge of Gy but not of
Gx. Consider an inequality in (7–8) corresponding to the edge (a, b). By substituting y
there we obtain an equality, and by substituting x there we obtain a strict inequality.
Subtract one from another. This will give us εmax · δx(a) < εmax · λδx(b) if a ∈ VMax and
εmax · δx(a) > εmax · λδx(b) if a ∈ VMin. This means that (a, b) is a violating pair for Gx.

It only remains to note that there exists an edge of Gy which is not an edge of Gx.
Indeed, otherwise all inequalities that are tight for y = x+ εmaxδx were tight already for
x. Then εmax could be increased, contradiction.

4.3 O(n(2 +
√

2)n) bound on the length of DNP games iteration
The argument has the following structure.

• Step 1. For a directed graph H = (V,EH) we define two vectors fH , gH ∈ N2n−1.

• Step 2. We define the alternating lexicographic ordering – this will be a linear
ordering on the set N2n−1.

• Step 3. We show that in each step of a DNP games iteration (a) neither fH nor
gH decrease and (b) either fH or gH increase (in the alternating lexicographic
ordering).

• Step 4. We bound the number of values fH and gH can take (over all directed
graph H with n nodes). By step 3 this bound (multiplied by 2) is also a bound on
the length of a DNP games iteration.

Step 1. The first coordinate of the vector fH equals the number of nodes with
δH(a) = 1 (all such nodes are from VMin). The other 2n− 2 coordinates are divided into
n − 1 consecutive pairs. In the ith pair we first have the number of nodes from VMax
with δH(a) = λi, and then the number of nodes from VMin with δH(a) = λi.

The vector gH is defined similarly, with the roles of Max and Min and + and −
reversed. The first coordinate of gH equals the number of nodes with δH(a) = −1 (all
such nodes are from VMax). The other 2n−2 coordinates are divided into n−1 consecutive
pairs. In the ith pair we first have the number of nodes from VMin with δH(a) = −λi,
and then the number of nodes from VMax with δH(a) = −λi.

14

Step 2. The alternating lexicographic ordering is a lexicographic order obtained from
the standard ordering of integers in the even coordinates and from the reverse of the
standard ordering of integers in the odd coordinates. I.e., we say that a vector u ∈ N2n−1

is smaller than a vector v ∈ N2n−1 in the alternating lexicographic order if there exists
i ∈ {1, 2, . . . , 2n− 1} such that uj = vj for all 1 6 j < i andui > vi if i is odd,

ui < vi if i is even.

For example,
(3, 2, 3) < (2, 3, 2), (2, 3, 1) > (2, 2, 7),

in the alternating lexicographic order on N3.

Step 3. This step relies on the following

Lemma 5. Assume that a graph H2 can be obtained from a graph H1 in one step of a
DNP games iteration. Then

(a) if for some i ∈ {0, 1, . . . , n − 1} it holds that {a ∈ V | δH1(a) = λi} 6= {a ∈ V |
δH2(a) = λi}, then fH2 is greater than fH1 in the alternating lexicographic order.

(b) if for some i ∈ {0, 1, . . . , n − 1} it holds that {a ∈ V | δH1(a) = −λi} 6= {a ∈ V |
δH2(a) = −λi}, then gH2 is greater than gH1 in the alternating lexicographic order.

Assume Lemma 5 is proved.

• Why neither fH nor gH can decrease? If fH2 does not exceed fH1 in the
alternating lexicographic order, then {a ∈ V | δH1(a) = λi} = {a ∈ V | δH2(a) =
λi} for every i ∈ {0, 1, . . . , n − 1} by Lemma 5. On the other hand, fH1 and fH2

are determined by these sets, so fH1 = fH2 . Similar argument works for gH1 and
gH2 as well.

• Why either fH or gH increase? Assume that neither fH2 is greater than fH1 nor
gH2 is greater than gH1 in the alternating lexicographic order. By Lemma 5 we have
for every i ∈ {0, 1, . . . , n− 1} that {a ∈ V | δH1(a) = λi} = {a ∈ V | δH2(a) = λi}
and {a ∈ V | δH1(a) = −λi} = {a ∈ V | δH2(a) = −λi}. This means that the
functions δH1 and δH2 coincide. On the other hand, there is an edge of H2 which
is violating for H1, contradiction.

We now proceed to a proof of Lemma 5. Let us stress that in the proof we do not use
the fact that H2 contains a violating pair for H1. We only use the fact that H2 contains
all optimal edges of H1.

Proof of Lemma 5. We only prove (a), the proof of (b) is similar. Let j be the smallest
element of {0, 1, . . . , n − 1} for which {a ∈ V | δH1(a) = λj} 6= {a ∈ V | δH2(a) = λj}.
First consider the case j = 0. We claim that in this case the first coordinate of fH2 is

15

smaller than the first coordinate of fH1 . Indeed, fH1
1 is the number of sinks from VMin in

the graphH1. In turn, fH2
1 is the number of sinks from VMin in the graphH2. On the other

hand, all sinks of H2 are also sinks of H1. Indeed, nodes that are not sinks of H1 have
in H1 an out-going optimal edge. All these edges are also in H2. Hence fH2

1 6 fH1
1 . The

equality is not possible because otherwise {a ∈ V | δH1(a) = 1} = {a ∈ V | δH2(a) = 1},
contradiction with the fact that j = 0.

Now assume that j > 0. Then the sets {v ∈ V | δH1(v) = λj} and {v ∈ V | δH2(v) =
λj} are distinct. There are two cases:
• First case: {v ∈ VMax | δH1(v) = λj} 6= {v ∈ VMax | δH2(v) = λj}.

• Second case: {v ∈ VMin | δH1(v) = λj} 6= {v ∈ VMin | δH2(v) = λj}.
We will show that in the first case we have fH1

2j < fH2
2j , and in the second case we have

fH1
2j+1 > fH2

2j+1. This would prove that fH2 exceeds fH1 in alternating lexicographic order
(recall that the first 1 + 2(j − 1) coordinates of fH1 and fH2 coincide by minimality of
j, and note that they also coincide in the (2j)th coordinate whenever the first case does
not hold).

Proving fH1
2j < fH2

2j in the first case. By definition, fH1
2j is the size of the set

{v ∈ VMax | δH1(v) = λj}, and fH2
2j is the size of the set {v ∈ VMax | δH2(v) = λj}. So it

is enough to show that the first set is a subset of the second set (in fact, it would be a
strict subset because we already know that these sets are distinct).

In other words, it is enough to show that for any a ∈ VMax with δH1(a) = λj we also
have δH2(a) = λj. By (5–6) there is an edge (a, b) of the graph H1 with δH1(b) = λj−1.
We also have that δH2(b) = λj−1, because {v ∈ V | δH1(v) = λj−1} = {v ∈ V | δH2(v) =
λj−1} (due to minimality of j). On the other hand, since δH1(a) = λδH1(b), the edge
(a, b) is optimal for H1. Hence this edge is also in the graph H2. So in the graph H2
there is an edge from a ∈ VMax to a node b with δH2(b) = λj−1. Hence by (5) we have
δH2(a) > λj. It remains to show why it is impossible that δH2(a) > λj. Indeed, by the
minimal choice of j, the sets {v ∈ V | δH1(v) > λj} and {v ∈ V | δH2(v) > λj} are the
same (and a by definition is not in the first set).

Proving fH1
2j+1 > fH2

2j+1 in the second case. By the same argument, it is enough
to show that any a ∈ VMin with δH2(a) = λj also satisfies δH1(a) = λj. It is clear that
δH1(a) 6 λj, because otherwise for some i < j we would have that the sets {v ∈ V |
δH1(v) = λi} and {v ∈ V | δH2(v) = λi} are distinct (a would belong to the first set
and not to the second one). This would give us a contradiction with the minimality
of j. Thus, it remains to show that δH1(a) > λj. Assume that this is not the case,
i.e., δH1(a) 6 λj+1. Since a ∈ VMin, the node a is not a sink of H1, as the value
in a Min’s sink is 1 > λj+1. Hence by (6) there exists an edge (a, b) in the graph
H1 with δH1(b) = δH1(a)/λ 6 λj. Then we also have that δH2(b) 6 λj, because by
minimality of j we have {v ∈ V | δH1(v) > λj−1} = {v ∈ V | δH2(v) > λj−1} and hence
{v ∈ V | δH1(v) 6 λj} = {v ∈ V | δH2(v) 6 λj}. But the edge (a, b) is optimal for
H1, so the edge (a, b) is also in the graph H2. This means that in the graph H2 there
is an edge from a to a node b with δH2(b) 6 λj. Hence by (6) we have δH2(a) 6 λj+1,
contradiction.

16

Step 4. Notice that fH and gH belong to the set of all vectors v ∈ N2n−1 satisfying:

‖v‖1 6 n, (11)
v1 = 0 =⇒ v2 = v3 = . . . = v2n−1 = 0, (12)

v2i = v2i+1 = 0 =⇒ v2i+2 = v2i+3 = . . . v2n−1 = 0 for every i ∈ {1, . . . , n− 2}. (13)

To see (11) note that in our case the l1-norm is just a sum of coordinates. By construction,
the sum of coordinates of fH is the number of nodes with δH(a) > 0 and the sum of
coordinates of gH is the number of nodes with δH(a) < 0. The fact that fH satisfies
(12–13) can be seen from the following observation: if {a ∈ V | δH(a) = λi} = ∅, then
we also have {a ∈ V | δH(a) = λj} = ∅ for every j ∈ {i + 1, i + 2, . . . , n − 1}. Indeed,
by (5–6) a node with δH(a) = λj has an edge leading to a node with δH(b) = λj−1. By
continuing in this way we would reach a node with δH(a) = λi, contradiction.

Thus, the desired upper bound on the length of a DNP games iteration follows from
the following technical lemma.

Lemma 6. The number of vectors v ∈ N2n−1 satisfying (11–13) is O(n(2 +
√

2)n).

Proof. Let A be the set of v ∈ N2n−1 satisfying (11–13). For v ∈ A let t(v) be the
largest t ∈ {1, 2, . . . , n− 1} such that v2t + v2t+1 > 0. If there is no such t at all (i.e., if
v2 = v3 = . . . = v2n−1 = 0), then define t(v) = 0.

Let At = {v ∈ A | t(v) = t}. We claim that |At| 6 (2 +
√

2)n for any t. As t(v) takes
only O(n) values, the lemma follows.

The size of A0 is n, so we may assume that t > 0. Take any ρ ∈ (0, 1). Observe that:

ρn|At| 6
∑
v∈At

ρ‖v‖1 =
∑
v∈At

ρv1 · ρv2+v3 · . . . ρv2t+v2t+1

6

 ∞∑
v1=1

ρv1

 ·
 ∑

(v2,v3)∈N2\{(0,0)}
ρv2+v3

 · . . . ·
 ∑

(v2t,v2t+1)∈N2\{(0,0)}
ρv2t+v2t+1

=
(∞∑
a=1

ρa
)
·

 ∑
(b,c)∈N2\{(0,0)}

ρb+c

t .
Indeed, the first inequality here holds because ‖v‖1 6 n by (11) for v ∈ A. The second
inequality holds because for v ∈ A with t(v) = t we have v1 > 0 by (12) and v2i+v2i+1 > 0
for every i ∈ {1, 2, . . . , t} by (13).

Next, notice that for ρ = 1− 1√
2 we have:

(∞∑
a=1

ρa
)
·

 ∑
(b,c)∈N2\{(0,0)}

ρb+c

t 6 1

. Indeed,
∞∑
a=1

ρa = ρ

1− ρ =
√

2− 1 < 1,

17

∑
(b,c)∈N2\{(0,0)}

ρb+c = 1
(1− ρ)2 − 1 = 1.

Thus, we get ρn|At| 6 1. I.e., |At| 6 (1/ρ)n = (2 +
√

2)n, as required.

4.4 Improving the analysis to O(3.214n)
As was noticed by one of the reviewers of this paper, our proof of Lemma 5 actually
proves a stronger statement, namely:

Lemma 7. Let <Lex denote the standard lexicographic order on the set Zn. Assume that
a graph H2 can be obtained from a graph H1 in one step of DNP games iteration. Then

(a) if for some i ∈ {0, 1, . . . , n − 1} it holds that {a ∈ V | δH1(a) = λi} 6= {a ∈ V |
δH2(a) = λi}, then:

(−fH1
1 , fH1

2 − fH1
3 , . . . , fH1

2n−2 − fH1
2n−1) <Lex (−fH2

1 , fH2
2 − fH2

3 , . . . , fH2
2n−2 − fH2

2n−1).

(b) if for some i ∈ {0, 1, . . . , n − 1} it holds that {a ∈ V | δH1(a) = −λi} 6= {a ∈ V |
δH2(a) = −λi}, then:

(−gH1
1 , gH1

2 − gH1
3 , . . . , gH1

2n−2 − gH1
2n−1) <Lex (−gH2

1 , gH2
2 − gH2

3 , . . . , gH2
2n−2 − gH2

2n−1).

Hence, up to a factor of 2, the length of a DNP games iterations is bounded by
the number of u = (u1, u2, . . . , un) ∈ Zn such that for some (v1, v2, . . . , v2n−1) ∈ N2n−1

satisfying (11–13) it holds that

u = (−v1, v2 − v3, . . . , v2n−2 − v2n−1).

Now we are left with a purely combinatorial problem of bounding the number of such
u. By using the “generating function” method as in Lemma 6, it is not hard to obtain a
bound nO(1)(1/ρ)n, where ρ is a unique root of the equation ρ2 + 2ρ/(1− ρ) = 1 in the
interval (0, 1).

4.5 O(2n) bound on the length of DNP games iteration for bi-
partite graphs

The proof differs only in the last step, where for bipartite graphs we obtain a better
bound. In more detail, if H is bipartite, then fH and gH in addition to (11–13) satisfy
the following property:

u2i = 0 for even i ∈ {1, . . . , n− 1}, u2i+1 = 0 for odd i ∈ {1, . . . , n− 1}. (14)

Indeed, for fH the condition (14) looks as follows:

fH2i = |{v ∈ VMax | δH(v) = λi}| = 0 for even i,
fH2i+1 = |{v ∈ VMin | δH(v) = λi}| = 0 for odd i.

18

This holds because from a node a with δH(a) = λi there a path of length i to a node
s with δH(s) = 1. If δH(s) = 1, then s ∈ VMin. Since H is bipartite, this means that
a ∈ VMin for even i and a ∈ VMax for odd i. The argument for gH is the same.

So it is enough to show that the number of v ∈ N2n−1 satisfying (11–14) is O(2n).
Let t(v) be defined in the same way as in the proof of Lemma 6. I.e., t(v) is the largest
t ∈ {1, . . . , n − 1} for which v2t + v2t+1 > 0 (if there is no such t, we set t(v) = 0). Let
us bound the number of v ∈ N2n−1 satisfying (11–14) and ‖v‖1 = s, t(v) = t.

For t = 0 the number of such v is exactly 1. Assume now that t > 0. Then

v1 > 0, by (12)
v2i > 0 and v2i+1 = 0, for odd i ∈ {1, . . . , t} by (13) and (14),
v2i = 0 and v2i+1 > 0, for even i ∈ {1, . . . , t} by (13) and (14),
vj = 0 for j > 2t+ 1, by definition of t(v).

Hence the number of v ∈ N2n−1 satisfying (11–14) and ‖v‖1 = s, t(v) = t is equal to the
number of the solutions to the following system:

x1 + x2 + . . .+ xt+1 = s, x1, x2, . . . , xt+1 ∈ N \ {0}.

This number is
(
s−1
t

)
. By summing over all s 6 n and t we get the required O(2n)

bound.

5 nO(1) · 2n/2-time algorithm for energy games
In this section we give an algorithm establishing Theorem 3. We consider an energy
game G on a graph G = (V,E) with a weight function w : E → R and with a partition of
V between the players given by the sets VMax and VMin. We assume that G has n nodes
and m edges.

First, we notice that without loss of generality we may assume that G is bipartite.

Lemma 8. An energy game on n nodes can be reduced in strongly polynomial time to a
bipartite energy game on at most n nodes.

This fact seems to be overlooked in the literature. Here is a brief sketch of it. Suppose
that the pebble is in a ∈ VMax. After controlling the pebble for some time Max might
decide to enter a Min’s node b. Of course, it makes sense to do it via a path of the largest
weight (among all paths from a to b with intermediate nodes controlled by Max). We
can simply replace this path by a single edge from a to b of the same weight. Similar
thing can be done with Min, but now the weight should be minimized. By performing
this for all pair of nodes controlled by different players we obtain an equivalent bipartite
game. A full proof is given in Appendix A.

To simplify an exposition we first present our algorithm for the case when the fol-
lowing assumption is satisfied.

19

Assumption 1. In the graph G there are no zero cycles.

Discussion of the general case is postponed to the end of this section.
Exposition of the algorithm follows the same scheme as for discounted games. First we

define a polyhedron that we will work with. Now we call it the polyhedron of potentials.
In the algorithm we iterate the points of this polyhedron via feasible shifts. To produce
feasible shifts we again use discounted normal play games. We should also modify a
terminating condition. Given a point of the polyhedron of potentials satisfying our new
terminating condition, one should be able to find all the nodes that are winning for
Max in our energy game. We also describe an analog of procedure RealizeGraph (again
used to control the bit-length of points that arise in the algorithm). All this is collected
together in the Algorithm 2. Here are details.

The polyhedron of potentials is defined as follows:

xa > w(e) + xb for (a, b) ∈ E, a ∈ VMax, (15)
xa 6 w(e) + xb for (a, b) ∈ E, a ∈ VMin. (16)

Here x is an n-dimensional real vector with coordinates indexed by the nodes of the
graph. This polyhedron is denoted by PolPoten.

By setting

xa =

W a ∈ VMax,

0 a ∈ VMin,

forW = maxe∈E |w(e)| we obtain that PolPoten is not empty (here it is important that
our energy game is bipartite).

We use notions similar to those we gave for the optimality polyhedron. Namely, we
call an edge e = (a, b) ∈ E tight for x ∈ PolPoten if xa = w(e)+xb. The set of all e ∈ E
that are tight for x ∈ PolPoten is denoted by Ex. By Gx we mean the graph (V,Ex).
A very important consequence of the Assumption 1 is that for every x ∈ PolPoten the
graph Gx is a directed acyclic graph. Indeed, a cycle consisting of edges that are tight
for x would be a zero cycle, contradicting Assumption 1.

Next, we call a vector δ ∈ Rn a feasible shift for x ∈ PolPoten if for all small enough
ε > 0 it holds that x + εδ ∈ PolPoten. Again, discounted normal play games on Gx

can be used to produce a feasible shift for x. Now the discount factor in a discounted
normal play game is irrelevant. We can pick an arbitrary one, say, λ = 1/2. As before,
for x ∈ PolPoten we let δx be the solution to (3–6) for the graph Gx. Since the graph
Gx is acyclic, we have δx(a) 6= 0 for every a ∈ V . Define V +

x = {a ∈ V | δx(a) > 0} and
V −x = {a ∈ V | δx(a) < 0}.

Lemma 9. Assume that x ∈ PolPoten and let χ+
x be the characteristic vector of the

set V +
x . Then χ+

x is a feasible shift for x.

Proof. Assume that (a, b) ∈ Ex. It is enough to show that χ+
x (a) > χ+

x (b) if a ∈ VMax
and χ+

x (a) 6 χ+
x (b) if a ∈ VMin.

20

First, assume that a ∈ VMax and χ+
x (a) < χ+

x (b). Then χ+
x (a) = 0 and χ+

x (b) = 1,
i.e., δx(b) > 0 and δx(a) < 0. But this contradicts (5).

Similarly, assume that a ∈ VMin and χ+
x (a) > χ+

x (b). Then χ+
x (a) = 1 and χ+

x (b) = 0,
i.e., δx(b) < 0 and δx(a) > 0. This contradicts (6).

A pair of nodes (a, b) ∈ V × V is called strongly violating for x if either a ∈
VMin, δx(a) > 0, δx(b) < 0 or a ∈ VMax, δx(a) < 0, δx(b) > 0. Clearly, if (a, b) is strongly
violating for x, then (a, b) does not belong to Gx.

The following lemma specifies and justifies our new terminating condition.

Lemma 10. Let x ∈ PolPoten and assume that no edge of the graph G is strongly
violating for x. Then for the energy game G, the set V +

x is the set of nodes that are
winning for Max, and the set V −x is the set of nodes that are winning for Min.

Proof. Consider a positional strategy σ of Max defined as follows. For all a ∈ V +
x ∩VMax

strategy σ goes from a by an edge (a, b) ∈ Ex with b ∈ V +
x . There is always such an

edge because of (5) and because there are no sinks from VMax in V +
x . In the nodes from

V −x ∩ VMax strategy σ can be defined arbitrarily.
Let us also define the following positional strategy τ of Min. For all a ∈ V −x ∩ VMin

strategy τ goes from a by an edge (a, b) ∈ Ex with b ∈ V −x . Again, such an edge exists by
(6) and since there are no sinks from VMin in V −x . In the nodes from V +

x ∩ VMin strategy
τ can be defined arbitrarily.

First, let us verify that for every a ∈ V +
x from a one can reach only non-negative

cycles in the graph Gσ. This would mean that the nodes from V +
x are winning for Max

in G. First, it is impossible to reach V −x in Gσ from a ∈ V +
x . Indeed, σ does not leave

V +
x by definition. In turn, an edge that starts in a Min’s node from V +

x and goes to
V −x would be strongly violating for x. Hence it is enough to show that in the graph Gσ

every cycle consisting of nodes from V +
x is non-negative. Note that we can compute the

weight of a cycle by summing up w(e)+xb−xa over all edges e = (a, b) belonging to this
cycle (the terms xa cancel out). In turn, for edges of Gσ lying inside V +

x all expressions
w(e) + xb − xa are non-negative. Indeed, for every e that starts in VMin the expression
w(e) + xb − xa is non-negative by (16). In turn strategy σ uses edges of the graph Gx,
i.e., edges that are tight for x. For these edges we have w(e) + xb − xa = 0.

Similarly one can show that for every a ∈ V −x from a one can reach only non-positive
cycles in the graph Gτ . In fact, by Assumption 1 there are no zero cycles, so all these
cycles will be strictly negative.

We also define an analogue of the procedure RealizeGraph(S) that we used in the
discounted case. Its input is again a subset S ⊆ E. Its output will be either a point
x ∈ PolPoten or “not found”. This procedure will again have the following features.

• if its output is not “not found”, then its output is a point x ∈ PolPoten such that
S ⊆ Ex. If its output is “not found”, then there is no such point.

• The bit-length of an output of RealizeGraph(S) is polynomially bounded.

21

To achieve this, one can again run Megiddo’s algorithm [21] on a system obtained from
(15–16) by turning inequalities corresponding to edges from S into equalities. In fact,
this system has rather specific form now. Namely, all inequalities in (15–16) are of the
form x 6 y + c, where x, y are variables and c is a constant. For such systems one
can use, for example, a simpler algorithm of Pratt [24]. It is also well-known that such
systems are essentially equivalent to the shortest path problem.

Now we are ready to give an algorithm establishing Theorem 3. Our goal is to find
the sets

WMax = {a ∈ V | a is winning for Max in the energy game G},
WMin = {a ∈ V | a is winning for Min in the energy game G}.

Algorithm 2: nO(1) · 2n/2-time algorithm for energy games
Result: The sets WMax,WMin.
initialization: x = RealizeGraph(∅);
while there is an edge of G which is strongly violating for x do

εmax ← the largest ε ∈ (0,+∞) s.t x+ εχ+
x ∈ PolPoten;

x← RealizeGraph(Ex+εmaxχ
+
x

);
end
output WMax = V +

x , WMin = V −x ;
The correctness of the output of our algorithm follows from Lemma 10. To compute

V +
x , V

−
x and χ+

x , and to check the terminating condition we find δx in strongly polynomial
time by Lemma 4. In turn, we compute εmax in the same way as in Algorithm 1. To
demonstrate the correctness of the algorithm it only remains to show that εmax < +∞
throughout the algorithm. Indeed, when the terminating condition is not yet satisfied,
there exists an edge e = (a, b) of the graph G which is strongly violating for x. This
edge is not tight for x. Let us show that this edge is tight for x+ εχ+

x for some positive
ε. This would show that εmax 6 ε.

Let us only consider the case a ∈ VMax, the case a ∈ VMin will be similar. Since (a, b)
is not tight for x, we have xa > w(e) + xb. Consider the same inequality for x + εχ+

x .
Its left-hand side will be bigger by εχ+

x (a), while its right-hand side will be bigger by
εχ+

x (b). Since (a, b) is strongly violating for x, we have χ+
x (b) = 1, χ+

x (a) = 0. So the
left-hand side does not change with ε, while the right-hand side strictly increases with ε.
Hence they the left-hand and the right-hand sides will become equal for some positive ε.

5.1 What if Assumption 1 does not hold?
Assume that we add small ρ > 0 to the weights of all edges. Then all non-negative cycles
in G become strictly positive. On the other hand, if ρ is small enough, then all negative
cycles stay negative. Thus, for all small enough ρ > 0 we obtain in this way an energy
game equivalent to the initial one and satisfying Assumption 1. The problem is how to
find ρ > 0 small enough so that this argument work.

22

If edge weights are integers, then we can set ρ = 1/(n + 1). However, it is not
clear how to find a suitable ρ > 0 when the weights are arbitrary real numbers. In this
case we use a standard “symbolic perturbation” argument that allows to avoid finding
ρ explicitly.

Namely, we add ρ to all weights of edges not as a real number but as a formal variable.
I.e., we will consider the weights as formal linear combinations of the form a+b ·ρ, where
a, b ∈ R are coefficients. First, we will perform additions over such combinations. More
specifically, the sum of a + b · ρ and c + d · ρ will be (a + c) + (b + d) · ρ. We will also
perform comparisons of these linear combinations. We say that a + b · ρ < c + d · ρ if
a < c or a = c, b < d. Note that the inequality a+ b · ρ < c+ d · ρ holds for formal linear
combinations a + b · ρ and c + d · ρ if and only if for all small enough ε ∈ R, ε > 0 the
same inequality holds for real numbers when one substitutes ε instead of ρ.

Thus, more formally, we consider the weights as elements of the additive group R2

equipped with the lexicographic order. Now, given our initial “real” energy game, we
consider another one where the weight of an edge e ∈ E is a formal linear combination
w(e) + ρ. After that Assumption 1 is satisfied (again, if one understands the weight of
a cycle as an element of the group R2).

We then run Algorithm 2, but now with the coordinates of the vector x being elements
of the group R2. We will not have to perform any multiplications and divisions with
our formal linear combinations2. This is because it is possible to perform Algorithm
2 using only additions and comparisons. Indeed, in computing εmax we solve at most
m one-variable linear equations with the coefficient before the variable being 1. We
should also explain how to perform RealizeGraph(S) procedure using only additions
and comparisons. For that we implement RealizeGraph(S) using Pratt’s algorithm [24].
This algorithm takes a systems of linear inequalities of the from x 6 y+ c (where x and
y are variables and c is a constant). It either outputs a feasible point of the system
or recognizes its infeasibility. It does so by performing the standard Fourier–Motzkin
elimnation and removing redundant inequalities. Namely, for two variables x and y
among all inequalities of the form x 6 y + c it only remembers one with the smallest c.
This keeps the number of inequalities O(n2). Thus, complexity of Pratt’s algorithm is
strongly polynomial, and clearly we only need additions and comparisons to perform it.

To argue that a version of Algorithm 2 with formal linear combinations is correct
we use a sort of compactness argument. Fix some N and “freeze” the algorithm after
N steps. Up to now only finitely many comparisons of linear combinations over ρ were
performed. For all small enough real ε > 0 all these comparisons will have the same result
if one substitutes ε instead of ρ. So after N steps the “formal” version of Algorithm 2
will be in the same state as the “real” one, i.e., one where in advance we add a small
enough real number ε to all the weights. In turn, for all small enough ε the “real” version
terminates in N = nO(1)2n/2 steps (see the next section) with the correct output to our
initial energy game. It is important to note that a bound N on the number of steps of
the “real” algorithm is independent of ε. Hence the “formal” version also terminates in

2Multiplications and divisions would not be a disaster for this argument as we could consider formal
rational fractions over ρ. However, we find it instructive to note that we never go beyond the group R2.

23

at most N = nO(1)2n/2 steps with the correct output.

6 Energy games: complexity analysis
The complexity analysis of Algorithm 2 follows the same scheme as for discounted games.
First, we define strong DNP games iteration (a more restrictive version of DNP games
iteration, see Subsection 6.1). Then we consider a sequence x0, x1, x2, . . . of points from
PolPoten that arise in Algorithm 2. We show that the corresponding sequence of
graphs Gx0 , Gx1 , Gx2 , . . . can be obtained in a strong DNP games iteration (Subsection
6.2). Finally, we show that the length of a strong DNP games iteration is bounded by
O(2n/2) (Subsection 6.3).

6.1 Definition of strong DNP games iteration
In a strong DNP games iteration all graphs are assumed to be bipartite and acyclic.

Consider a directed bipartite acyclic graph H = (V = VMax t VMin, EH). We say
that a pair of nodes (a, b) ∈ V × V is strongly violating3 for H if either a ∈ VMin,
δH(a) > 0, δH(b) < 0 or a ∈ VMax, δH(a) < 0, δH(b) > 0. Here, as before, δH is the
solution to (3–6) for H (and for λ = 1/2). Note once again that for acyclic graphs we
have δH(a) 6= 0 for all a ∈ V .

Consider another directed bipartite acyclic graph K = (V,EK) over the same set of
nodes as H, and with the same partition of V into Max’s nodes and into Min’s nodes.
We say that K can be obtained from H in one step of strong DNP games iteration if the
following two conditions holds:

• any optimal edge of H is in EK ;

• the set EK contains a pair of nodes which is strongly violating for H.

Finally, we say that a sequence of directed bipartite acyclic graphs H0, H1, . . . , Hj

can be obtained in strong DNP games iterations if for all i ∈ {0, 1, . . . , j − 1} the graph
Hi+1 can be obtained from Hi in one step of strong DNP games iteration.

6.2 Why the sequence Gx0, Gx1, Gx2, . . . can be obtained in strong
DNP games iteration

Consider any two consecutive points x and x′ = RealizeGraph(Ex+εmaxχ
+
x

) of PolPoten
from Algorithm 2. We shall show that the graph Gx′ can be obtained from Gx in one
step of strong DNP games iteration. First, note that both of these graphs are bipartite
(because the underlying energy game is bipartite) and acyclic (because of Assumption
1). Set y = x+εmaxχ+

x . As the graph Gx′ contains all edges of the graph Gy, it is enough
to show the following

3This notion already appeared in Lemma 10, but only for graphs of the form Gx, x ∈ PolPoten.

24

(a) all the edges of the graph Gx that are optimal for Gx are also in the graph Gy;

(b) there is an edge of the graph Gy which is a strongly violating pair for the graph
Gx.

Proof of (a). Take any edge (a, b) of the graph Gx which is optimal for Gx. Clearly,
the values of δx(a) and δx(b) are either both positive or both negative. Hence the shift
χ+
x increases both xa and xb by the same amount. This means that (a, b) is still tight

for y, i.e., (a, b) is an edge of Gy.
Proof of (b). First, there exists an edge e = (a, b) ∈ E which belongs to the

graph Gy and not to Gx. Indeed, otherwise all edges that are tight for y were already
tight for x, and hence εmax could be increased. It is enough to show now that any edge
(a, b) ∈ Ey \ Ex is strongly violating for Gx. Since (a, b) is not tight for x, we have:

• xa > w(e) + xb if a ∈ VMax;

• xa < w(e) + xb if a ∈ VMin.

On the other hand, since (a, b) is tight for y, we have:

xa + εmaxχ
+
x (a) = w(e) + xb + εmaxχ

+
x (b).

Hence χ+
x (a) < χ+

x (b) if a ∈ VMax and χ+
x (a) > χ+

x (b) if a ∈ VMin. Recall that the vector
χ+
x is the indicator of the set of nodes where the value of δx is positive. This means that

(a, b) is strongly violating for Gx.

6.3 O(2n/2) bound on length of strong DNP games iteration
Note that strong DNP games iteration is a special case of DNP games iteration. Hence
all the results we established for DNP games iteration can be applied here. Since we are
dealing with bipartite graphs, we already have the bound O(2n) proved in Subsection
4.5.

Let us first give an idea what causes an improvement from 2n to 2n/2. Unlike dis-
counted games, we now have a guarantee that every time a strongly violating pair ap-
pears. This yields that in each step of a strong DNP games iteration both vectors fH and
gH increase in the alternating lexicographic order, not only one. Now, what provides
that each time we have a strongly violating pair? Loosely speaking, Algorithm 2 looks
like Algorithm 1 with λ = 1. For λ = 1 all the nodes from {v ∈ V | δx(v) > 0} are shifted
by the same quantity, similarly for the set {v ∈ V | δx(v) < 0}. Hence no violating pair
can appear inside one of these sets. Instead, a new violating pair will be between these
two sets, i.e., it will be strongly violating.

We now proceed to a formal argument. First, let us explain why the fact that both
fH and gH increase each time leads to a O(2n/2) bound. Note that ‖fH‖1 = |{a ∈
V | δH(a) > 0}| and ‖gH‖1 = |{a ∈ V | δH(a) < 0}|. Hence ‖fH‖1 + ‖gH‖1 = n.
Therefore, if a strong DNP games iteration has length l, then either ‖fH‖1 6 n/2 at

25

least l/2 times or ‖gH‖1 6 n/2 at least l/2 times. Hence there are at least l/2 different
vectors v ∈ N2n−1 satisfying (11–14) and ‖v‖1 6 n/2. On the other hand, the number
of such vectors is O(2n/2). Indeed, as shown in Subsection 4.5 the number of v ∈ N2n−1

satisfying (11–14) and ‖v‖1 = s, t(v) = t is
(
s−1
t

)
. By summing over all s 6 n/2 and t

we get the required O(2n/2) bound.
It only remains to explain why both fH and gH increase in each step of a strong

DNP games iteration. Let H1 and H2 be two consecutive graphs in a strong DNP games
iteration. Assume first that fH2 is not greater than fH1 in the alternating lexicographic
order. By Lemma 5 for every i ∈ {0, 1, . . . , n− 1} it holds that {a ∈ V | δH1(a) = λi} =
{a ∈ V | δH2(a) = λi}. In particular, {a ∈ V | δH1(a) > 0} = {a ∈ V | δH2(a) > 0}.
Since δH1 and δH2 are non-zero in all nodes (again, this is because these graphs are
acyclic), we also have {a ∈ V | δH1(a) < 0} = {a ∈ V | δH2(a) < 0}. Hence a pair
(a, b) ∈ V × V is strongly violating for H1 if and only if it is strongly violating for H2.
On the other hand, the graph H2 contains as an edge a strongly violating pair for H1,
contradiction.

Exactly the same argument shows that gH2 is greater than gH1 in the alternating
lexicographic order.

7 Discussion
We do not know whether the bounds we obtain for Algorithm 1 are tight. It seems un-
likely that this algorithm is actually subexponential. This is because an updated version
of [6] now contains a tight example for their algorithm. Due to similarities between these
two algorithms, it seems plausible that this example can lifted to discounted games.

One can consider a generalization of the discounted games, namely, the multi-
discounted games (where, roughly speaking, each edge can have its own discount). Let
us note that the multi-discounted games can also be solved by an analogue of Algorithm
1. However, we do not know whether this analogue has better time complexity than
2O(n logn). The reason why our analysis cannot be carried out for the multi-discounted
games is that now there are super-linearly many possible values in the underlying DNP
games. Improving 2O(n logn) time for the multi-discounted games is interesting on its
own, but it would also have consequences for the weighted mean payoff games (see [10]).

Finally, let us mention that from Algorithm 1 one can actually obtain an algorithm
for the value problem for mean payoff games. For that one should run this algorithm
with λ being a formal variable, behaving as if it were “arbitrarily close” to 1. This will
give us a solution to the optimality equations in a form of rational fractions in λ. It is
classical that from these fractions one can extract the values of the corresponding mean
payoff game. This implies that the value problem for mean payoff games can be solved
in 2O(n) time, even when the weights are real numbers (again, assuming an oracle access
to them as in the strongly polynomial algorithms). It seems that two known exponential
time algorithms for mean payoff games [17, 6] do not have this feature. Namely, they
reduce the value problem to the decision problem by a binary search. When the weights

26

are arbitrary real numbers, this reductions does not work.

Acknowledgments. I am grateful to Pierre Ohlmann for giving a talk about [6] at
the University of Warwick, and to Marcin Jurdzinski for discussions. I am also grateful
to the anonymous reviewers of SODA 2021 for helpful comments, in particular for a
suggestion improving Theorem 1. Finally, I would like to thank the authors of [6] for
pointing out to an updated version of their paper.

References
[1] Björklund, H., and Vorobyov, S. Combinatorial structure and randomized

subexponential algorithms for infinite games. Theoretical Computer Science 349, 3
(2005), 347–360.

[2] Bojańczyk, M., and Czerwiński, W. An au-
tomata toolbox. A book of lecture notes, available at
https://www.mimuw.edu.pl/∼bojan/upload/reduced-may-25.pdf, 2018.

[3] Bouyer, P., Fahrenberg, U., Larsen, K. G., Markey, N., and Srba, J.
Infinite runs in weighted timed automata with energy constraints. In International
Conference on Formal Modeling and Analysis of Timed Systems (2008), Springer,
pp. 33–47.

[4] Brim, L., Chaloupka, J., Doyen, L., Gentilini, R., and Raskin, J.-F.
Faster algorithms for mean-payoff games. Formal methods in system design 38, 2
(2011), 97–118.

[5] Chakrabarti, A., De Alfaro, L., Henzinger, T. A., and Stoelinga,
M. Resource interfaces. In International Workshop on Embedded Software (2003),
Springer, pp. 117–133.

[6] Dorfman, D., Kaplan, H., and Zwick, U. A faster deterministic exponential
time algorithm for energy games and mean payoff games. In 46th International Col-
loquium on Automata, Languages, and Programming (ICALP 2019) (2019), Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[7] Ehrenfeucht, A., and Mycielski, J. Positional strategies for mean payoff
games. International Journal of Game Theory 8, 2 (1979), 109–113.

[8] Fijalkow, N., Gawrychowski, P., and Ohlmann, P. The complexity of mean
payoff games using universal graphs. arXiv preprint arXiv:1812.07072 (2018).

[9] Filar, J., and Vrieze, K. Competitive Markov decision processes. Springer
Science & Business Media, 2012.

27

[10] Gimbert, H. and Zielonka, W. Applying Blackwell optimality: priority mean-
payoff games as limits of multi-discounted games. In Logic and Automata: History
and Perspectives, (pp. 331-356), Amsterdam University Press, Amsterdam, 2008.

[11] Gimbert, H., and Zielonka, W. Games where you can play optimally without
any memory. In International Conference on Concurrency Theory (2005), Springer,
pp. 428–442.

[12] Halman, N. Simple stochastic games, parity games, mean payoff games and dis-
counted payoff games are all LP-type problems. Algorithmica 49, 1 (2007), 37–50.

[13] Hansen, T. D., and Ibsen-Jensen, R. The complexity of interior point methods
for solving discounted turn-based stochastic games. In Conference on Computability
in Europe (2013), Springer, pp. 252–262.

[14] Hansen, T. D., Miltersen, P. B., and Zwick, U. Strategy iteration is strongly
polynomial for 2-player turn-based stochastic games with a constant discount factor.
Journal of the ACM (JACM) 60, 1 (2013), 1–16.

[15] Howard, R. A. Dynamic programming and markov processes.

[16] Jurdziński, M. Deciding the winner in parity games is in UP∩co-UP. Information
Processing Letters 68, 3 (1998), 119–124.

[17] Lifshits, Y. M., and Pavlov, D. S. Potential theory for mean payoff games.
Journal of Mathematical Sciences 145, 3 (2007), 4967–4974.

[18] Littman, M. L. Algorithms for sequential decision making. 1996.

[19] Ludwig, W. A subexponential randomized algorithm for the simple stochastic
game problem. Information and computation 117, 1 (1995), 151–155.

[20] Matoušek, J., Sharir, M., and Welzl, E. A subexponential bound for linear
programming. Algorithmica 16, 4-5 (1996), 498–516.

[21] Megiddo, N. Towards a genuinely polynomial algorithm for linear programming.
SIAM Journal on Computing 12, 2 (1983), 347–353.

[22] Papadimitriou, C. H., and Steiglitz, K. Combinatorial optimization: algo-
rithms and complexity. Courier Corporation, 1998.

[23] Pisaruk, N. N. Mean cost cyclical games. Mathematics of Operations Research
24, 4 (1999), 817–828.

[24] Pratt, V. Two easy theories whose combination is hard. Technical report, Mas-
sachusetts Institute of Technology, (1997).

[25] Puterman, M. L. Markov decision processes: discrete stochastic dynamic pro-
gramming. John Wiley & Sons, 2014.

28

[26] Rao, S. S., Chandrasekaran, R., and Nair, K. Algorithms for discounted
stochastic games. Journal of Optimization Theory and Applications 11, 6 (1973),
627–637.

[27] Shapley, L. S. Stochastic games. Proceedings of the national academy of sciences
39, 10 (1953), 1095–1100.

[28] Zwick, U., and Paterson, M. The complexity of mean payoff games on graphs.
Theoretical Computer Science 158, 1-2 (1996), 343–359.

A Proof of Lemma 8
Let us call a node a ∈ V of the graph G trivial in the following two cases:

• a ∈ VMax and only nodes of VMax are reachable from a;

• a ∈ VMin and only nodes of VMin are reachable from a.

Next, let us call a cycle C of the graph G trivial in the following two cases:

• cycle C is non-negative and all its nodes are from VMax;

• cycle C is negative and all its nodes are from VMin.

First step of our reduction is to get rid of trivial nodes and cycles. Note that once
we have detected a trivial node or a trivial cycle, we can determine the winner of our
energy game in at least one node. Indeed, to determine the winner in a trivial node we
essentially need to solve a one-player energy game. It is well-known that this can be
done in strongly polynomial time. In turn, all nodes of a trivial cycle are winning for
the player controlling these nodes – he can win just by staying on the cycle forever.

Next, once the winner is determined in at least one node, there is a standard way
of reducing the initial game to a game with fewer nodes. Suppose we know the winner
in a node a, say, it is Max. Then Max also wins in all the nodes from where he can
enforce reaching a. We simply remove all these nodes. This does not affect who wins
the energy games in the remaining nodes. Indeed, Max has no edges to removed nodes,
and a winning strategy of Min would never use an edge to these nodes. It should be also
noted that in the remaining graph all the nodes still have at least one out-going edge (a
sink would have been removed).

So getting rid of trivial nodes and cycles can be done as follows. We first detect
whether they exist. Then we determine the winner in some node of the graph and
reduce our game to a game with smaller number of nodes. Clearly, all these actions take
strongly polynomial time. This can be repeated at most n times, so the whole procedure
takes strongly polynomial time.

From now we assume that we are given an energy game G on a graph G = (V,E)
with no trivial cycles and nodes. We construct a bipartite graph G′ over the same set

29

of nodes and the corresponding bipartite energy game G ′ equivalent to the initial one.
In the definition of G′ we use the following notation. Consider a path p of the graph G.
We say that p is Max-controllable if all the nodes of p except the last one are from VMax
(the last one can belong to VMin as well as to VMax). In other words, Max should be able
to navigate the pebble along p without giving the control to Min. Similarly, we say that
p is Min-controllable if all the nodes of p except the last one are from VMin.

First, consider a pair of nodes a ∈ VMax, b ∈ VMin. We include (a, b) as en edge to the
graph G′ if and only if in G there is a Max-controllable path from a to b. Since a is not
a trivial node in G, there will be at least one edge starting at a in G′. Provided (a, b)
was included, we let its weight in G′ be the largest weight of a Max-controllable path
from a to b in G (with respect to the weight function of G). We call a path on which
this maximum is attained underlying for the edge (a, b). The weight of (a, b) in G′ will
be finite since in G there are no positive cycles consisting entirely of nodes from VMax.

We have described edges of G′ from VMax to VMin. Edges in the opposite direction are
defined analogously. Namely, consider a pair of nodes a ∈ VMin, b ∈ VMax. We include
this pair to G′ as an edge if and only if in G there is a Min-controllable path from a to
b. Once (a, b) is included, we let its weight be the minimal weight of a Min-controllable
path from a to b in G. A path attaining this minimum will be called underlying for
(a, b). Again, absence of trivial nodes guaranties that in G′ the node a will have at least
one out-going edge. The weight of (a, b) will be well-defined due to absence of trivial
cycles.

It only remains to argue that G ′ is equivalent to G. Let WMax (WMin) be the set of
nodes that are winning for Max (for Min) in G. It is enough to show that the set WMax
(the set WMin) is winning for Max (Min) in G ′. We prove it only for WMax, the argument
for WMin is similar.

Let σ be a Max’s optimal positional strategy in G. Consider the following Max’s
positional strategy σ′ in the graph G′ (this strategy will be winning for Max in the game
G ′ for the nodes from WMax). We will define it only for nodes in WMax. Given a Max’s
node a ∈ WMax, apply σ to a repeatedly until a node from VMin is reached. In fact, there
is a possibility that from a strategy σ loops before reaching any Min’s node. But then
the corresponding cycle would be negative (there are no trivial cycles). This would mean
that σ is not winning for Max in a. So we conclude that indeed by applying repeatedly
σ to a we reach a node from VMin. Let this node from VMin be b. Note that (a, b) is
an edge of G′, because we have reached b by a Max-controllable path from a. We let
σ′(a) = (a, b).

We shall prove that only non-negative cycles are reachable fromWMax in (G′)σ′ . First,
note that edges that σ′ uses do not leave WMax. This is because by applying a winning
Max’s strategy repeatedly we cannot leave WMax in G. Moreover, no Min’s edge in G′
can leaveWMax. Indeed, otherwise Min could leaveWMax in G. Thus, it remains to argue
that any cycle C ′ in (G′)σ′ , located in WMax, is non-negative. We do so by indicating in
the graph Gσ a cycle C, located in WMax and having at most the same weight as C ′. As
C is non-negative, the same holds for C ′.

To obtain C we replace each edge (a, b) of C ′ by a certain path p(a,b) from a to b in

30

Gσ. The path p(a,b) will never leave WMax and its weight in G will be at most the weight
of the edge (a, b) in G′.

If (a, b) ∈ VMin × VMax, we let p(a,b) be the underlying path for (a, b). Its weight in G
just equals the weight of (a, b) in G′. As this path is Min-controllable, it belongs to Gσ

and thus never leaves WMax.
If (a, b) ∈ VMax × VMin, then (a, b) is used by strategy σ′ in the node a. Hence by

definition of σ′ there is a Max-controllable path in Gσ from a to b. We let p(a,b) be this
path. It never leaves WMax as σ cannot leave WMax. The weight of (a, b) in G′ is the
largest weight of a Max-controllable path from a to b in G, so the weight of p(a,b) can
only be smaller.

31

	Introduction
	Our technique

	Preliminaries
	Discounted games
	Energy games

	nO(1)(2 + 2)n-time algorithm for discounted games
	Discounted normal play games.
	Optimality polyhedron
	The algorithm

	Discounted games: complexity analysis
	Definition of a DNP games iteration
	Why the sequence Gx0, Gx1, Gx2, … can be obtained in DNP games iteration
	O(n (2 + 2)n) bound on the length of DNP games iteration
	Improving the analysis to O(3.214n)
	O(2n) bound on the length of DNP games iteration for bipartite graphs

	nO(1) 2n/2-time algorithm for energy games
	What if Assumption 1 does not hold?

	Energy games: complexity analysis
	Definition of strong DNP games iteration
	Why the sequence Gx0, Gx1, Gx2, … can be obtained in strong DNP games iteration
	O(2n/2) bound on length of strong DNP games iteration

	Discussion
	Proof of Lemma 8

