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The problem



Example: axe

I Maximize the number of consecutive blue edges.

I How much memory? 2 states - whether you have already been
to the square.

I What if you observe only colors? Then ≥ 3 states, because no
2-state DFA distinguishes RRBB and RRBBRRBBBB.



Chromatic vs. General Memory

I Edge-colored graphs.

I Some nodes might be controlled by an adversary (so we play a
game).

I Infinite duration – so a play produces an infinite sequence of
colors.

I Our goal – this infinite sequence has to be from our winning
condition W ⊆ Cω.



Chromatic vs. General Memory

Non-uniform setting:

I GenMem(G ,W ) – the minimal number q s.t. there is a
strategy with q states of general memory which wins w.r.t. W
in the game graph G .

I ChrMem(G ,W ) – the same, but only chromatic strategies
(can observe only colors of edges).

I GenMem(G ,W ) ≤ ChrMem(G ,W ), what else?

Uniform setting:

I GenMem(W ) = maxGenMem(G ,W ) over all G where we
have some winning strategy w.r.t. W .

I ChrMem(W ) = maxChrMem(G ,W ) over all G where we
have some winning strategy w.r.t. W .

I GenMem(W ) ≤ ChrMem(W ), what else?



History, Motivation



Muller conditions

I A winning condition W ⊆ Cω is Muller if the following holds:
whether or not c1c2c3 . . . ∈ Cω belongs to W is determined
by the set of colors that occur infinitely often in c1c2c3 . . ..

I E.g., exactly two colors appear infinitely often.

I ChrMem(W ) < +∞ for every Mulller condition W
(deterministic parity automata for Muller languages +
positional determinacy of parity games).



Muller Conditions 2

Theorem (Casares, Colcombet, Lehtinen 2021-2022)

For any Muller condition W

I ChrMem(W ) equals the minimal size of a deterministic
Rabin automaton, recognizing W .

I GenMem(W ) equals the minimal size of a good-for-games
Rabin automaton, recognizing W .

Example of Casares:

ChrMem(exactly 2 colors) = # of colors,

GenMem(exactly 2 colors) = 2.

Resolves a conjecture of Kopczyński(2006)



General Conditions

Theorem (Bouyer, Le Roux, Oualhadj, Randour, Randour,
Vandenhove 2020)

For any winning condition W , if
ChrMem(W ) < +∞,ChrMem(¬W ) < +∞ for graphs without
adversary, then ChrMem(W ) < +∞,ChrMem(¬W ) < +∞ with
adversary.

I Characterization of the class of W with
ChrMem(W ) < +∞,ChrMem(¬W ) < +∞.

I Open: GenMem(W ) < +∞ =⇒ ChrMem(W ) < +∞?
(for finitely many colors).



Results



Our results

Theorem (Upper bound)

For any W and G with n nodes, we have
ChrMem(G ,W ) ≤

(
GenMem(G ,W ) + 1

)n
.

Exponential improvement over [Le Roux, 2020]:

ChrMem(G ,W ) ≤ 2GenMem(G ,W )·(n2+1).

Theorem (Lower Bound)

For any n and q there exists W and G with n nodes such that

GenMem(G ,W ) = q and ChrMem(G ,W ) ≥ qn−3.



Overview of the Proofs



Lower Bound

A self-verifying automaton is a NDFA with a partition of its
states into neutral, accepting and rejecting states such that for any
input word w exactly one of the following two statements hold:

I there exists a run of our automaton on w which leads to the
accepting state;

I there exists a run of our automaton on w which leads to the
rejecting state.

Theorem (Jirásková and Pighizzini, 2011)

For any n there exists a language recognized by some n-state
SVFA such that any DFA recognizing it has at least 3n/3 states.

Corollary (Weak Lower Bound)

For any n and q there exists W and G with n + 1 node such that

GenMem(G ,W ) = 2 and ChrMem(G ,W ) ≥ 3n/3.



Lower Bound



Upper bound

Theorem
For any W and G with n nodes, we have
ChrMem(G ,W ) ≤

(
GenMem(G ,W ) + 1

)n
.

Plan:

A strategy S1 with q states of general memory

7→ A strategy S2 with (q + 1)n states of chromatic memory

s.t. col(S2) ⊆ col(S1).

If S1 is winning for W , then so is S2, because

col(S2) ⊆ col(S1) ⊆W .



Upper bound

I S2 has to know “what would S1 do in this situation”.

I For a node u – a state of S1 such that some play with S1
comes to u and has the same sequence of colors.

I For some of the nodes we maintain such a state of S1. For
others “we don’t know”. So we need (q + 1)n states.

I Our actual current node has to have a state.

Why is this sufficient? We have col(S2) ⊆ colS1 for finite paths,
and hence for infinite by König’s Lemma.



Upper bound

I S2 has to know “what would S1 do in this situation”.

I For a node u – a state of S1 such that some play with S1
comes to u, has the same sequence of colors and brings
memory S1 into this state.

I For some of the nodes we maintain such a state of S1. For
others “we don’t know”. So we need (q + 1)n states.

I Our actual current node has to have a state.

If we receive a color c , we look for all ways we can extend our
current knowledge by a c-colored edge.



Thank you!


