State Complexity of Chromatic Memory in Infinite-Duration Games

Alexander Kozachinskiy

Highlights 2022

The problem

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @

Example: axe

- \blacktriangleright Maximize the number of consecutive blue edges.
- \blacktriangleright How much memory? 2 states whether you have already been to the square.
- I What if you observe only colors? Then $>$ 3 states, because no 2-state DFA distinguishes RRBB and RRBBRRBBBB.

Chromatic vs. General Memory

- \blacktriangleright Edge-colored graphs.
- \triangleright Some nodes might be controlled by an adversary (so we play a game).
- Infinite duration so a play produces an infinite sequence of colors.
- \triangleright Our goal this infinite sequence has to be from our winning condition $W \subseteq C^{\omega}$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Chromatic vs. General Memory

Non-uniform setting:

- GenMem(G, W) the minimal number q s.t. there is a strategy with q states of general memory which wins w.r.t. W in the game graph G.
- **ChrMem** (G, W) the same, but only chromatic strategies (can observe only colors of edges).
- ▶ GenMem (G, W) \leq ChrMem (G, W) , what else?

Uniform setting:

- GenMem(W) = max GenMem(G, W) over all G where we have some winning strategy w.r.t. W .
- **ChrMem**(W) = max **ChrMem**(G, W) over all G where we have some winning strategy w.r.t. W .

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

▶ GenMem (W) < ChrMem (W) , what else?

History, Motivation

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Muller conditions

A winning condition $W \subseteq C^{\omega}$ is **Muller** if the following holds: whether or not $c_1c_2c_3\ldots\in C^\omega$ belongs to W is determined by the set of colors that occur infinitely often in $c_1c_2c_3 \ldots$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

- \blacktriangleright E.g., exactly two colors appear infinitely often.
- ▶ ChrMem(W) $< +\infty$ for every Mulller condition W (deterministic parity automata for Muller languages $+$ positional determinacy of parity games).

Muller Conditions 2

Theorem (Casares, Colcombet, Lehtinen 2021-2022) For any Muller condition W

- \blacktriangleright ChrMem(W) equals the minimal size of a deterministic Rabin automaton, recognizing W .
- GenMem(W) equals the minimal size of a good-for-games Rabin automaton, recognizing W .

Example of Casares:

ChrMem(exactly 2 colors) $=$ $\#$ of colors, **GenMem**(exactly 2 colors) $= 2$.

Resolves a conjecture of Kopczyński(2006)

General Conditions

Theorem (Bouyer, Le Roux, Oualhadj, Randour, Randour, Vandenhove 2020)

For any winning condition W , if $ChrMem(W) < +\infty$, $ChrMem(\neg W) < +\infty$ for graphs without adversary, then ChrMem(W) $< +\infty$, ChrMem($\neg W$) $< +\infty$ with adversary.

- \triangleright Characterization of the class of W with $ChrMem(W) < +\infty$, $ChrMem(\neg W) < +\infty$.
- \triangleright Open: GenMem(W) < + $\infty \implies$ ChrMem(W) < + ∞ ? (for finitely many colors).

KORKAR KERKER SAGA

Results

K ロ K K 레 K K E K K E X X K K K K A K K

Our results

Theorem (Upper bound)

For any W and G with n nodes, we have $\mathsf{ChrMem}(G, W) \leq (\mathsf{GenMem}(G, W) + 1)^n$.

Exponential improvement over [Le Roux, 2020]:

$$
\mathsf{ChrMem}(G,W) \leq 2^{\mathsf{GenMem}(G,W)\cdot (n^2+1)}.
$$

Theorem (Lower Bound)

For any n and q there exists W and G with n nodes such that

GenMem $(G, W) = q$ and **ChrMem** $(G, W) \geq q^{n-3}$.

KORKAR KERKER SAGA

Overview of the Proofs

Kロトメ部トメミトメミト ミニのQC

Lower Bound

A self-verifying automaton is a NDFA with a partition of its states into *neutral, accepting* and *rejecting* states such that for any input word w exactly one of the following two statements hold:

- \triangleright there exists a run of our automaton on w which leads to the accepting state;
- \triangleright there exists a run of our automaton on w which leads to the rejecting state.

Theorem (Jirásková and Pighizzini, 2011)

For any n there exists a language recognized by some n-state SVFA such that any DFA recognizing it has at least $3^{n/3}$ states.

Corollary (Weak Lower Bound)

For any n and q there exists W and G with $n+1$ node such that

GenMem $(G, W) = 2$ and **ChrMem** $(G, W) \geq 3^{n/3}$.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Lower Bound

≮ロト ⊀何 ト ⊀ ヨ ト ⊀ ヨ ト つへへ

Upper bound

Theorem For any W and G with n nodes, we have $\mathsf{ChrMem}(G, W) \leq (\mathsf{GenMem}(G, W) + 1)^n$. Plan:

A strategy S_1 with q states of general memory \mapsto A strategy S_2 with $(q + 1)^n$ states of chromatic memory s.t. col $(S_2) \subset \text{col}(S_1)$.

If S_1 is winning for W, then so is S_2 , because

 $col(S_2) \subseteq col(S_1) \subseteq W$.

KORKARYKERKER POLO

Upper bound

- \triangleright S_2 has to know "what would S_1 do in this situation".
- For a node $u a$ state of S_1 such that some play with S_1 comes to u and has the same sequence of colors.
- \triangleright For some of the nodes we maintain such a state of S_1 . For others "we don't know". So we need $(q + 1)^n$ states.
- \triangleright Our actual current node has to have a state.

Why is this sufficient? We have col $(S_2) \subseteq \mathsf{col}S_1$ for finite paths, and hence for infinite by König's Lemma.

KORKARYKERKER POLO

Upper bound

- \triangleright S_2 has to know "what would S_1 do in this situation".
- For a node $u a$ state of S_1 such that some play with S_1 comes to u , has the same sequence of colors and brings memory S_1 into this state.
- For some of the nodes we maintain such a state of S_1 . For others "we don't know". So we need $(q + 1)^n$ states.
- \triangleright Our actual current node has to have a state.

If we receive a color c, we look for all ways we can extend our current knowledge by a c-colored edge.

KORKARYKERKER POLO

Thank you!

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @