State Complexity of Chromatic Memory in Infinite-Duration Games

Alexander Kozachinskiy

Highlights 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The problem

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Example: axe

- Maximize the number of consecutive blue edges.
- How much memory? 2 states whether you have already been to the square.
- ▶ What if you observe only colors? Then ≥ 3 states, because no 2-state DFA distinguishes RRBB and RRBBRRBBBB.

Chromatic vs. General Memory

- Edge-colored graphs.
- Some nodes might be controlled by an adversary (so we play a game).
- Infinite duration so a play produces an infinite sequence of colors.
- Our goal this infinite sequence has to be from our winning condition W ⊆ C^ω.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Chromatic vs. General Memory

Non-uniform setting:

- GenMem(G, W) the minimal number q s.t. there is a strategy with q states of general memory which wins w.r.t. W in the game graph G.
- ChrMem(G, W) the same, but only chromatic strategies (can observe only colors of edges).
- GenMem $(G, W) \leq$ ChrMem(G, W), what else?

Uniform setting:

- GenMem(W) = max GenMem(G, W) over all G where we have some winning strategy w.r.t. W.
- ChrMem(W) = max ChrMem(G, W) over all G where we have some winning strategy w.r.t. W.
- ► GenMem(W) ≤ ChrMem(W), what else?

History, Motivation

Muller conditions

▶ A winning condition $W \subseteq C^{\omega}$ is **Muller** if the following holds: whether or not $c_1c_2c_3... \in C^{\omega}$ belongs to W is determined by the set of colors that occur infinitely often in $c_1c_2c_3...$

- E.g., exactly two colors appear infinitely often.
- ► ChrMem(W) < +∞ for every Muller condition W (deterministic parity automata for Muller languages + positional determinacy of parity games).

Muller Conditions 2

Theorem (Casares, Colcombet, Lehtinen 2021-2022) For any Muller condition W

- ChrMem(W) equals the minimal size of a deterministic Rabin automaton, recognizing W.
- GenMem(W) equals the minimal size of a good-for-games Rabin automaton, recognizing W.

Example of Casares:

ChrMem(exactly 2 colors) = # of colors, **GenMem**(exactly 2 colors) = 2.

Resolves a conjecture of Kopczyński(2006)

General Conditions

Theorem (Bouyer, Le Roux, Oualhadj, Randour, Randour, Vandenhove 2020)

For any winning condition W, if $ChrMem(W) < +\infty$, $ChrMem(\neg W) < +\infty$ for graphs without adversary, then $ChrMem(W) < +\infty$, $ChrMem(\neg W) < +\infty$ with adversary.

- Characterization of the class of W with ChrMem(W) < +∞, ChrMem(¬W) < +∞.</p>
- ▶ Open: GenMem(W) < +∞ ⇒ ChrMem(W) < +∞? (for finitely many colors).

Results

Our results

Theorem (Upper bound)

For any W and G with n nodes, we have $ChrMem(G, W) \leq (GenMem(G, W) + 1)^{n}$.

Exponential improvement over [Le Roux, 2020]:

ChrMem(
$$G, W$$
) $\leq 2^{\text{GenMem}(G,W) \cdot (n^2+1)}$

Theorem (Lower Bound)

For any n and q there exists W and G with n nodes such that

GenMem(G, W) = q and **ChrMem** $(G, W) \ge q^{n-3}$.

Overview of the Proofs

Lower Bound

A **self-verifying automaton** is a NDFA with a partition of its states into *neutral*, *accepting* and *rejecting* states such that for any input word *w* **exactly one** of the following two statements hold:

- there exists a run of our automaton on w which leads to the accepting state;
- there exists a run of our automaton on w which leads to the rejecting state.

Theorem (Jirásková and Pighizzini, 2011)

For any n there exists a language recognized by some n-state SVFA such that any DFA recognizing it has at least $3^{n/3}$ states.

Corollary (Weak Lower Bound)

For any n and q there exists W and G with n + 1 node such that

GenMem(G, W) = 2 and **ChrMem** $(G, W) \ge 3^{n/3}$.

Lower Bound

▲ロト▲御ト▲臣ト▲臣ト 臣 の父父

Upper bound

Theorem For any W and G with n nodes, we have $ChrMem(G, W) \le (GenMem(G, W) + 1)^n$. Plan:

A strategy S_1 with q states of general memory \mapsto A strategy S_2 with $(q+1)^n$ states of chromatic memory s.t. $\operatorname{col}(S_2) \subseteq \operatorname{col}(S_1)$.

If S_1 is winning for W, then so is S_2 , because

 $\operatorname{col}(S_2) \subseteq \operatorname{col}(S_1) \subseteq W.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Upper bound

- S_2 has to know "what would S_1 do in this situation".
- For a node u a state of S₁ such that some play with S₁ comes to u and has the same sequence of colors.
- For some of the nodes we maintain such a state of S₁. For others "we don't know". So we need (q + 1)ⁿ states.
- Our actual current node has to have a state.

Why is this sufficient? We have $col(S_2) \subseteq colS_1$ for finite paths, and hence for infinite by König's Lemma.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Upper bound

- S_2 has to know "what would S_1 do in this situation".
- For a node u a state of S₁ such that some play with S₁ comes to u, has the same sequence of colors and brings memory S₁ into this state.
- For some of the nodes we maintain such a state of S₁. For others "we don't know". So we need (q + 1)ⁿ states.
- Our actual current node has to have a state.

If we receive a color c, we look for all ways we can extend our current knowledge by a c-colored edge.

Thank you!